سفارش تبلیغ
صبا ویژن

دنیای فناوری و اطلاعاتpolymer (شیمی.نانو.مکانیک.پلاستیک.لاستیک.)


عاشق آسمونی
عاشقان
لحظه های آبی
پرسه زن بیتوته های خیال
وبلاگ شخصی محمدعلی مقامی
هو اللطیف

● بندیر ●
مهندسی پلیمر(کامپوزیت.الاستومر. پلاستیک.چسب ورزین و...)
بی عشق!!!
آخرین روز دنیا
مُهر بر لب زده
%% ***-%%-[عشاق((عکس.مطلب.شعرو...)) -%%***%%
کانون فرهنگی شهدا
یک کلمه حرف حساب
روانشناسی آیناز
داشگاه آزاد دزفول
.: شهر عشق :.
بانک اطلاعاتی خودرو
فقط عشقو لانه ها وارید شوند
پتی آباد سینمای ایران
منطقه آزاد
رازهای موفقیت زندگی
نور
توشه آخرت
عشق الهی: نگاه به دین با عینک محبت، اخلاق، عرفان، وحدت مسلمین
محمد قدرتی Mohammad Ghodrati
گروه اینترنتی جرقه داتکو
نهِ/ دی/ هشتاد و هشت
راه های و فواید و تاثیر و روحیه ... خدمتگذاری
ایـــــــران آزاد
پزشک انلاین
این نجوای شبانه من است
رویابین
* روان شناسی ** ** psychology *
حباب زندگی
ثانیه
دست نوشته
در تمام بن بستها راه آسمان باز است
مهندسی متالورژِی
دوزخیان زمین
پایگاه اطلاعاتی و کاربردی شایگان
mansour13
به دلتنگی هام دست نزن
حقوق و حقوقدانان
هامون و تفتان
قلب خـــــــــــــــــــــــــــاکی
کشکول
وبلاگ تخصصی مهندسی عمران
خبرهای داغ داغ
باران کوثری
عشق صورتی
دنیای بهانه
عشق طلاست
خانه اطلاعات
من هیچم
قدرت ابلیس
غلط غولوت
انجمن مهندسان ایرانی
just for milan & kaka
چالوس و نوشهر
نامه ی زرتشت
دنیای واقعی
تارنما
سامانتا
دختر و پسر ها وارد نشند اینجا مرکز عکس های جدید ودانلوده
محرما نه
موتور سنگین ... HONDA - SUZUKI ... موتور سنگین
ماهیان آکواریمی
قدرت شیطان
.... تفریح و سرگرمی ...
عد ل
راز و نیاز با خدا
عاشقان میگویند
جزیره ی دیجیتالی من
خلوت تنهایی
پرسش مهر 9
نـــــــــــــــــــــــــــــور خــــــــــــــــــــــــــــدا
اس ام اس عاشقانه
طوبای طوی
قلم من توتم من است . . .
منتظران دل شکسته
محمدرضا جاودانی
روح .راه .ارامش
اهلبیت (ع)
::::: نـو ر و ز :::::
باور
در سایه سار وحدت
چشمای خیس من
جالبــــــــــات و ....
دنیای پلیمر
کسب در آمد از اینترنت
سخنان برگزیده دکتر شریعتی
شناسائی مولکول های شیمیائی
بانک اطلاعات نشریات کشور
استاد سخن پرداز
لینکستان
سایت تخصصی اطلاع رسانی بازیافت
صنعت خودرو
پلیمرهای نوری
انجمن های تخصصی مهندسی پزشکی
سایت تخصصی پلیمر
مهندسی صنایع پلیمر
فرشته ای در زمین
نجوا
مجلات دانش پلیمر
امام رضا
سکوت شب
برای آپلود مطلب اینجا را کلیک کنید
وبلاگ تخصصی گزارش کار های آزمایشگاه
پشت خطی
بانک اطلاعات نشریات کشور
کتابخانه عرفانی ما
فناوری
بهترین سایت دانلود رایگان
آگهی رایگان صنایع شیمیایی
امار لحظه به لحظه جهان
محاسبه وزن ایده ال
کتابخانه مجازی ایران
مرکز تقویم
عکس هایی از سرتاسر جهان
سایت اطلاعات پزشکی
موتور ترجمه گوگل
پایگاه اطلاع رسانی شغلی

اولین دانشنامه نرم افزار ایران
بانک مقالات روانشناسی
جدول
اپلود عکس
اوقات شرعی
ضرب المثل ها وحکایت ها
متن فینگیلیش بنویسید و به فارس
دانلود نرم افزار
سایت تخصصی نساجی
طراح سایت
مرجع اختصاصی کلمات اختصاری
کتابخانه مجازی ایران
کتابخانه مجازی ایران
کتابخانه مجازی ایران
کتابخانه مجازی ایران
کتابخانه مجازی ایران
این چیه؟
معماری

روشی برای تقویّت بتن های معمولی :‌

در بتن های پلیمری از تکنیک آغشته سازی بتن با پلیمر استفاده می شود . در این روش ، یک سیستم مونومری به داخل بتن سخت شده نفوذ می کند و پس از پلیمریزاسیون موجب انسداد مجاری و حفره های درون بدنه و اتّصال بیشتر اجزاء متشکّله و ارتقای بسیاری از خواصّ بتن خواهد شد . در این روش از مونومر های متیل متا کریلات و استایرن استفاده می شود . روش کار بدین ترتیب است که نمونه های بتن را خشک و تمیز نموده و سپس خنک می کنیم . بعد بتن را با سیستم مونومری
آغشته می کنیم و پس از انجام پلیمریزاسیون کاتالیتی حرارتی ، بتن پلیمری آماده است . این بتن ، مقاومت فشاری و نفوذناپذیری اش افزایش پیدا کرده است .

مزایای بتن های پلیمری :

1 استحکام    2- کرنش های فشاری ، خمشی ، کششی (‌چندین برابر )    3 میرایی    4 عمر سرویس

5 مقاومت سایش و ضربه ای            6 مقاومت در برابر تغییرات جوّی    7- مقاومت در برابر عوامل شیمیایی

8 مقاومت در برابر عوامل مخرّب محیطی      9- مقاومت در برابر عوامل مخرّب صنعتی    10- جذب آب کمتر 

11 افت کمتر خواص    12 خواصّ فیزیکی و مکانیکی بهتر        13 - دارای خواصّ تزئینی

 

خاصّیت بتن پلیمری با بایندر اپوکسی و پلی استر

افزایش یا کاهش خاصّیّت نسبت به بتن سیمانی<\/h2>

استحکام فشاری<\/h2>

پنج و سه دهم برابر افزایش می یابد

استحکام کششی

پنج و هشت دهم برابر افزایش می یابد

استحکام خمشی

چهار برابر افزایش می یابد

کرنش فشاری

پنج و دو دهم برابر افزایش می یابد

کرنش خمشی

ده ها برابر افزایش می یابد

جذب آب

10 تا 60 برابر کاهش می یابد

 

جدول بالا به خوبی می تواند مزایای بتن پلیمری با بایندر اپوکسی و پلیستر را نسبت به بتن سیمانی نشان دهد ، علاوه بر این بتن پلیمری پلی یورتان دارای ازدیاد طول منحصر بفردی است . بتن های پلیمری در برابر شستشوی دائم مقاومند و فراورش و اجرای آسانی دارند .

استفاده از بتن های پلیمری در قطعات پیش ساخته و نماهای ساختمانی:‌

یکی از موارد استفاده از بتن های پلیمری ، تولید قطعات پیش ساخته و نماهای ساختمانی است که البتّه این قطعات ، معایب سنگ های طبیعی را ندارند ، سنگ های طبیعی که در صنعت ساختمان مورد استفاده قرار می گیرند اغلب دارای معایبی هستند که بعضی از آنها این چنین اند :‌

1 سنگ های طبیعی چگالی بالایی دارند .        2- در اثر عوامل جوّی و موادّ شیمیایی تخریب پذیرند .

3 نفوذ پذیری و جذب آب بالایی دارند .           4  –تهیّه آنها در ضخامت کم به دلیل شکنندگی بالایی که دارند
ممکن نیست   .          5
حمل و نقل آنها سخت است .        6 عایق صوت و حرارت نیستند .

بتن های پلیمری چگالی پایین ، خواصّ فیزیکی و مکانیکی سطح بالا را دارا هستند و امکان اعمال طرح های تزئینی متنوّع در آنها وجود دارد و جایگزینی مناسب برای سنگ های تزئینی و نماهای خارجی رایج خواهند بود. (‌مرمر ، گرانیت انیکس و .. )

با انتخاب موادّ اوّلیّه خاصّ برای تولید این نوع بتن تزئینی و فراورش مناسب ، سنگ نمای مصنوعی سبکی تولید خواهد شد که معایب سنگ های تزئینی طبیعی را نداشته و دارای خواصّ و برتری های ذیل می باشد :

1 چگالی 3/1 گرم بر سانتی متر مکعّب .       2 درصد جذب آب 19% (‌یک شصتم بتن سبک و یک سی ام بتن معمولی )

3 قدرت چسبندگی بیشتر بر روی بتن سیمانی      4 مقاومت در برابر ضربه .       5 سازگاری حرارتی بسیار خوب در محدوده دمایی 30 تا 70 درجه سانتیگراد     6 - مقاومت بسیار عالی در برابر شرایط محیطی شیمیایی 7 استحکام فشاری ، خمشی و کششی بالاتر .   8 تنوّع رنگ بسیار زیاد .

نکته جالب این است که با وجود تمام محاسنی که ذکر شد ، این نوع تولیدات ، قیمت کمتری نسبت به سنگ های طبیعی دارند .


ارسال شده در توسط ملیحه ماندنی پور

کاربرد بتن های پلیمری به عنوان صفحات ضدّ گلوله :

برای تولید صفحات ضدّ گلوله در صورتی که وزن و حجم ، عوامل محدود کننده ای نباشند ، بتن سیمانی در تهیّه و ساخت موانع ضدّ‌گلوله به کار می رود . در صورتی که به جای سیمان از رزین پلیمری ، به عنوان حامل در ترکیب بتن استفاده شود ، مقاومت مکانیکی بتن افزایش چشمگیری می یابد و‌ سرعت گیرش و پخت سازه مورد نظر به صورت محسوسی بالا می رود .

در این ترکیب پلیمری که شامل 12 درصد رزین است ، 3 درصد تقویت کننده شامل پودر و لاستیک الیاف کوتاه شیشه ،
ایجاد خواهد شد ، این صفحه ضدّ گلوله ،‌ برای ساخت هدفی با حدّ اقل ضخامت 5 تا 6 سانتی متر به کار می رود و می تواند گلوله ای با انرژی معادل 2400 ژول را مهار کند و کمترین خسارات را متحمّل شود .

کاربرد بتن های پلیمری سبک در ساخت تابلوهای ایمنی راه :

با توجّه به گسترش جادّه ها و ازدیاد مسافرت ها ، نیاز به علایم رانندگی هر روز بیش از پیش احساس می شود . این علایم عمودی و افقی هستند و نوع قائم آن از پایه و سر تابلو تشکیل شده است و عموماً از جنس فلز ساخته می شود ؛
 با توجّه به اینکه مصرف این تابلوها در کشور بسیار زیاد است و فلزّ به کار رفته در آن ورقی و وارداتی و ارزبر است و از طرف دیگر منابع فراوان تولید بتن و سیمان در کشور وجود دارد ، مسئولین بر آن شدند تا از بتن سبک در تولید علائم ایمنی شهری بهره برداری کنند . این تابلو ها باید به گونه ای باشند که اوّلاً در برابر عوامل جوّی و یخبندان مقاوم باشند ، ثانیاً‌ از
نظر اقتصادی ، مقرون به صرفه باشند و ثالثاً دارای سطحی صاف و بدون خلل و فرج باشند تا بتوان شبرنگ ها را بر روی آنها چسباند . از این رو در حال حاضر به دستور سازمان مدیریّت و برنامه ریزی ، محقّقین در حال تحقیق در زمینه استفاده از
بتن های پلیمری برای تولید پایه و سر تابلوهایی هستند که خاصیّت های مذکور را دارا باشند ، چنانچه بتوان به این مهم
دست یافت ، حدود 30 الی 50 درصد کاهش هزینه نسبت به علایم فلزی خواهیم داشت و به عبارتی سالیانه حدود چندصد میلیون تومان کاهش هزینه خواهیم داشت .

نتیجه گیری :

با توجّه به آشنایی مختصری که در این مقاله نسبت به بتن پلیمری به دست آمد ، می توان پیش بینی کرد که در آینده از بتن پلیمری به صورت عمده ، هم در داخل ساختمان به عنوان تحمّل کننده بار و هم در خارج از ساختمان به عنوان نما استفاده خواهد شد ، بدون شک آنچه که باعث افزایش استفاده از بتن پلیمری شده است ، قابلیّت تغییر در خواصّ آن با تغییر دادن نوع و درصد پرکننده ها و بایندر های پلیمری است .

امید است دانشمندان و دانش پژوهان ایرانی از عرصه تحقیقاتی وارد عرصه ازمایشگاهی شوند تا بدین ترتیب صنعت ساختمان کشور بهبود فن آوری یابد .

  

 

 

 


 

1-     بتن پلیمری :  حسین کلاگر ، حسان بابا شاه ( دانشجوی دانشگاه آزاد اسلامشهر ) - آذر1382

2-     مرکز اطّلاعات و مدارک علمی ایران (‌وزارت علوم )

3-     چکیده پایان نامه پیمان دشتی زاده (‌کارشناسی ارشد تربیت مدرّس )

4-     چکیده مقاله کنفرانس بین المللی سواحل و بنادر و سازه های دریایی ( دکتر مهرداد کوکبی ، قادر خانبابایی )‌

5-     چکیده پایان نامه علی نیک پی (‌کارشناسی ارشد تربیت مدرّس )‌

6-     چکیده پایان نامه رضا افشارپور (‌کارشناسی ارشد صنعتی اصفهان )‌

7-     چکیده پایان نامه حمیدرضا زمانی (‌کارشناسی ارشد دانشگاه تهران )

8-      چکیده پایان نامه بابک اسماعیلی (‌کارشناسی ارشد تربیت مدرّس )

9-      چکیده پایان نامه فرامرز زمودی ( کارشناسی ارشد تربیت مدرّس )

10     - چکیده مقاله زهره خانی ، محمّدرضا حسینیان (‌ماهنامه سیمان )

11     - پروژه های سازمان مدیریّت و برنامه ریزی


ارسال شده در توسط ملیحه ماندنی پور

یکی ازپژوهشگران پژوهشگاه پلیمر و پتروشیمی ایران با به کارگیری فن‌آوری نانو موفق به فرمول بندی مختلفی از کامپوزیت‌های الاستومری پلی یورتان بر پایه خاک رس شد.

به گزارش ایسنا،  مهندس فریدون نیا در این خصوص گفت: در این طرح فرمول بندی‌های مختلفی از کامپوزیت‌های الاستومری پلی یورتان و مواد نانو خاک رس، طراحی و ساخته شد و با بررسی دو روش تولید (پلیمر شدن درجا و در همرفتگی مذاب) و متغیرهای فرایند، شیوه‌های بهینه برای دستیابی به ساختار نانو تعیین شد که نتایج حاصل از این طرح در صنایع مختلفی قابل استفاده خواهد بود.


وی خاطرنشان کرد: فن‌آوری نانو و تولید مواد در ابعاد نانومتری موضوع تحقیقات جذابی است که توجه بسیاری را به خود معطوف داشته است. نانو کامپوزیت‌های پلیمری نیز به عنوان یکی از شاخه‌های این فن‌آوری جدید، اهمیت بسیاری یافته‌اند و یکی از شاخه‌های تحقیقاتی فعال به شمار می‌آید.


مهندس فریدون نیا با اشاره به مزایای بهره‌بری از خاک‌های رس، خاطر نشان کرد: خاکهای رس به دو دلیل برای مصرف در ساخت نانوکامپوزیت‌ها بسیار مناسبند، اول این که این مواد در طبیعت یافت می‌شوند و از نظر کانی‌شناسی خلوص بالایی داشته و دارای قیمت پایین تری هستند و دوم این که ساختار شیمیایی آنها به گونه‌ای‌ است که با انجام اصلاحات شیمیایی سطحی با پلیمرهای آلی سازگار می‌شوند.


وی با بیان این که خاک رس طبیعی و سیلیکات‌های لایه‌یی مصنوعی به صورت موفقیت آمیزی در تهیه نانوکامپوزیت‌های پلیمری تجاری مورد استفاده قرار گرفته‌اند، افزود: کشور ما دارای مناطق آب و هوایی گوناگون است و خوشبختانه انواع مختلف خاک رس به وفور در آن یافت می‌شود، در این صورت ارزش واقعی طرح‌هایی که بتوانند خاک رس ارزان قیمت را به خاک رس عالی با قیمت مناسب و در نهایت نانوکامپوزیت‌هایی با خواص عالی تبدیل کند، کاملا روشن است.


مهندس فریدون نیا همچنین در خصوص مزایای کاربرد نانو کامپوزیت‌های پلیمر ــ خاک رس، خاطر نشان کرد: یکی از کاربردهای نانو کامپوزیت پلیمر - خاک رس، تاخیر انداختن شعله (FLAME RETARDANCY) یا کاهش سرعت سوختن است.‌علاوه بر این که تهیه این نوع از کامپوزیت‌ها برخی خواص فیزیکی ــ مکانیکی را نیز بهبود می‌بخشد.


وی ادامه داد: این محصول در کفپوش‌ها، عایقها و پانل‌های ساختمانی،‌اسفنجها (فوم‌ها) و قطعات مختلف خودرو، کشتی، هواپیما و صنایع نظامی قابل استفاده است.


این دانشجوی کارشناسی ارشد، کاهش عبور پذیری گازهای مختلف را از دیگر مزایای استفاده از نانو کامپوزیت‌های پلیمر ــ خاک رس عنوان و خاطرنشان کرد: کاهش عبور پذیری گازهای مختلف مانند اکسیژن، بخار آب و دی اکسید کربن نیز از جمله مزایای بهره‌گیری از این نانو کامپوزیت‌ها است؛ علاوه بر این که مقاومت حرارتی نانوکامپوزیت از پلیمر اولیه و دمای تخریب بالاتر است.


وی در پایان با ابراز امیدواری نسبت به تولید پلی یورتان در صنایع پتروشیمی کشور در آینده‌ای نزدیک، اظهار داشت: طرح تولید دی ایزوسیانات‌های MDI و TDI در آینده در پتروشیمی کارون مورد بهره‌برداری قرار می‌گیرد که با توجه به وجود بازار رقابتی، لازم است عرضه محصولات پتروشیمی همگام با تکنولوژی روز باشد.
http://mahdihashemi.blogfa.com/
.bananews.ir/
ارسال شده در توسط ملیحه ماندنی پور
یک پژوهشگر مبتکر ایرانی موفق به ابداع نوع جدیدی از قالب و اتصالات سبک پلیمری جهت قالب بندی دیوارهای بتنی شد.

مهندس مجید مظاهری ، کارشناس و پژوهشگر سازه و مبتکر این روش درباره ویژگی‌های این سیستم جدید گفت: با ابداع روش جدید و طراحی قطعات مورد نیاز، نوعی سیستم قالب بندی بر مبنای ضوابط آیین نامه بتن ایران، راهنمای قالب بندی دفتر تدوین مقررات ملی ساختمان و آیین‌نامه قالب‌بندی بتن ACI347 طراحی و ارائه شده که دارای امتیازات متعددی از جمله سرعت بیشتر نسبت به سایر سیستم‌های قالب بندی به دلیل سبکی و سهولت نصب قطعات است. صفحات سبک قالب در این سیستم از فوم تقویت شده با دانستیه بالا تشکیل شده و رابط‌هایی پلاستیکی وظیفه ارتباط بین صفحات تماس را به عهده دارند. طراحی صفحات و رابط‌ها به صورتی انجام شده که امکان باز کردن قالب و استفاده مجدد از آنها وجود دارد و در عین حال می توان آنها را در جای خود باقی گذاشت.

مهندس مظاهری با اذعان به این که سیستم‌های موسوم به ICF نیز با ظاهری مشابه این سیستم وجود دارد اظهار کرد: در این سیستم‌ها، صفحات قالب صرفا به صورت ماندگار مصرف می‌شوند که در نهایت به افزایش شدید هزینه‌ها منجر می‌شود که این موضوع یکی از ایرادات اصلی این سیستم‌ها برای اجرای انواع دیوارهای بتنی به شمار می‌رود.

سهولت نصب و باز کردن مجموعه قالب بندی به نحوی است که سرعت قالب بندی و اجرای دیوار اعم از مسلح و غیر مسلح را در مقایسه با سایر سیستم‌ها سه تا چهار برابر افزایش می‌دهد. اجرای این سیستم نیازی به مهارت خاصی نداشته و با تجربه اندکی قابل نصب است.

این مبتکر، کنترل دمای بتن ریخته شده در قالب در آب و هوای سرد و یخبندان را از نکات جالب توجه و منحصر به فرد این سیستم عنوان و خاطرنشان کرد: صفحات قالب مستعمل به دلیل این که خواص عایق حرارتیشان در زمان قالب‌بندی تغییر نمی‌کند، امکان به کارگیری دوباره در دیوارهای دو جداره یا کف‌ها به عنوان عایق حرارتی را دارند و یا به عنوان مصالح پر کننده در درزهای انقطاع به کار می‌روند.

وی اضافه کرد: در این سیستم به دلیل سرعت بالای قالب بندی امکان قالب‌بندی گام به گام و بتن ریزی لایه به لایه در دیوارها، بدون نگرانی از بروز درز سرد که در صورت وقفه زیاد بین لایه‌های بتن ریز رخ می‌دهد، وجود دارد.

این امر (یعنی قالب بندی گام به گام) از ریختن بتن از ارتفاع زیاد که به جدایش سنگدانه‌ها منجر می‌شود نیز جلوگیری کرده و سهولت تراکم بتن یا همان ویبراسیون را نیز فراهم می‌کند. همچنین سطح تمام شده دیوارها دارای نقوش منظمی است که در صورت دقت بتن ریزی و قالب بندی می‌تواند به صورت بتن اکسپوز (نما) استفاده شود اما در عین حال این نقوش دارای برجستگی زیادی نبوده و تاثیری بر حجم بتن مصرفی یا مشخصات مقطع بتن نداشته و می‌توان به راحتی سطح بتن را با پوششهای رایج نیز اندود کرد.

مهندس مظاهری در پایان درباره کاربردهای این سیستم گفت: یکی از کاربردهای عمده این سیستم احداث خانه‌های یک یا دو طبقه جهت نوسازی یا بازسازی روستاها و مناطق زلزله زده است. سازه این ساختمان‌ها به صورت پانلی (دیواره بتنی مسلح) بوده که یکی از مناسب‌ترین سیستم‌ها در برابر بارهای لرزه‌یی است. همچنین سرعت اجرا و تکمیل ساختمان‌ها توسط این روش بدون افزایش در هزینه‌ها، بسیار بالا بوده و ساختمان‌های احداثی نیز دارای بالاترین شاخصه‌های در زمینه استانداردهای بهینه سازی مصرف انرژی در ساختمان‌ها می‌باشند.

نقل از ایسنا


ارسال شده در توسط ملیحه ماندنی پور
خلاصه

بتن پلیمری ( PC ) یا بتن رزینی شامل یک چسباننده‌ی پلیمری که ممکن است ترموپلاستیکها باشند اما غالباً بیشتر یک پلیمر ترموست می‌باشد و یک پرکننده‌ی معدنی مانند شن و ماسه، شن و یاسنگ گسسته است.

PCها مقاومت بالاتر، مقاومت بیشتر در برابر مواد شیمیایی و خورنده‌ها، جذب آب کمتر و پایداری بالاتر در مقابل پدیده یخ‌زدگی – ذوب (ذوب مجدد) نسبت به بتن سیمان پر تلند رایج دارند.


مقاله‌ی فوق ترجمه‌ای از دو مقاله‌ی انگلیسی می‌باشد با عنوان اصلی Polymer Modified Concrete و Polymer Concrete که منبع اصلی آنها سایت http://irc.nrc-cnrc.gc.ca/pubs/cbd/index_e.html است.


ارسال شده در توسط ملیحه ماندنی پور

متخصصان ایرانی، با ساخت ‌آزمایشگاهی نوعی نانوکامپوزیت پلی(استایرن) فوم‌شونده با آب، گام بزرگی برای رفع مشکل آتشگیری فوم های پلی‌استایرنی برداشتند.

 

پژوهشگران دانشگاه تهران بر این باورند که با افزودن نانورس اصلاح شده به فرمولاسیون دانه‌های پلی‌استایرن قابل انبساط با آب، می‌توان میزان اشتعال‌پذیری این دانه‌ها و همچنین فوم‌های آنها را کاهش داد.
هرچند سنتز نانوکامپوزیت‌های پلی‌استایرن قابل انبساط با آب اولین بار در سال 2006 گزارش شده، اما تاکنون تحقیقی در مورد اثر پارامترهای ساختاری نانورس بر مراحل سنتز و خواص محصول نهایی انجام نشده است.
از این رو، "نادر طاهری قزوینی" و همکاران، پژوهشی را برای بررسی ارتباط ساختار-خواص فوم‌های نانوکامپوزیتی پلی‌استایرن قابل انبساط با آب انجام دادند.
آنها اثر مقدار و ویژگی‌های سطحی چند نوع نانورس اصلاح شده را بر نحوه‌ پراکنش آن در ماتریس پلی‌استایرن بررسی کرده و بر مبنای آن، ویژگی‌هایی نظیر نحوه‌ توزیع عامل پف‌زا در دانه‌ها، اندازه و توزیع اندازه ذرات دانه‌ها، چگالی، مورفولوژی و ویژگی‌های آتش‌گیری اسفنج نهایی را مورد ارزیابی و بررسی قرار دادند.
بررسی‌ها نشان می‌دهد که افزودن نانورس اصلاح شده باعث افزایش میزان آب در دانه‌های قابل انبساط می‌شود.
علاوه بر این، نتایج حاکی از اثرگذاری مدل پراکنش نانورس در ماتریس پلی‌استایرنی بر اندازه دانه‌ها، چگالی دانه‌ها قبل از انبساط، مورفولوژی سلول است و بهترین نتیجه در حالت پوسته پوسته، یعنی در حداکثر میزان پراکندگی ذرات نانورس، به دست آمده است.
در این کار تحقیقاتی، در مرحله اول و به صورت جداگانه، محلول پلی‌استایرن در مونومر آن، پراکنه یکنواختی از نانورس در مونومر استایرن و همچنین مخلوط پایداری از یک پلیمر آبدوست در مونومر استایرن تهیه شده است.
در مرحله دوم محلول و پراکنه‌های حاصل از مرحله اول را با یکدیگر مخلوط و در نهایت پس از تعلیق آنها در محیط آبی و انجام پلیمریزاسیون تعلیقی، ذرات نانوکامپوزیتی نهایی حاصل شده است.
پس از سنتز، ابتدا شناسایی ساختاری و مورفولوژیکی ذرات انجام و سپس ذرات اولیه با استفاده از روش‌های گوناگون منبسط شدند. در انتهای کار، شناسایی مورفولوژی فوم حاصل و بررسی خواص کاربردی آن انجام شد.
نتایج این پژوهش می‌تواند در صنایع بالادستی پتروشیمی (برای تولید محصولات جدید) و در صنایع پایین‌دستی به ویژه صنعت ساختمان، کاربرد بسیار زیادی داشته باشد.
همچنین با توجه به آتشگیری بسیار زیاد این فوم‌ها، استفاده از نوع نانوکامپوزیتی آن که آتشگیری کمتری دارد، می‌تواند مزیت‌های بی‌شماری داشته باشد.
جزییات این پژوهش که با همکاری خانم "رفیعه ‌السادات نوروزیان امیری"، دکتر "ناصر شریفی سنجانی" و دکتر "محمد براری" انجام شده، در مجله Journal of Macromolecular Science R (جلد48، صفحات 955–966، سال 2009) منتشر شده است.


ارسال شده در توسط ملیحه ماندنی پور
به گزارش مهر، محمدرضا مرادی نیا سرپرست بخش الکتریک مرکز «صنایع یاعلی» اصفهان با بیان این خبر گفت: با تلاش متخصصان این مرکز در زمینه تولید شیشه بالگردهای شینوک 206 ، جت رنجر 214 ، بالگرد اصفهان و 205 نیزخودکفا شده ایم. شیشه های پلیمری بالگرد مطابق با آخرین استانداردهای بین المللی، تولید و ارائه شده است.
وی افزود: این مرکز علاوه بر تولید شیشه های پلیمری، موفق به فرم دهی آنها نیز شده است.
مرادی نیا با بیان اینکه علاوه بر تأمین نیاز داخلی، امکان صادرات این شیشه ها نیز فراهم شده است، اضافه کرد: تاکنون هزار و 200 قطعه شیشه انواع بالگرد در مرکز «صنایع هوایی یاعلی» ساخته شده است. همچنین 400 نوع قطعه لاستیکی و بیش از هزار نوع قطعه فلزی مورد نیاز در تعمیر بالگردها تولیدشده است.
*ساخت تستر بالگرد
سرپرست بخش الکتریک مرکز«صنایع یاعلی» اصفهان طراحی و ساخت تسترهای بالگرد را از دیگر اقدامهای این مرکز ذکر کرد و گفت: این سیستم دارای دو«برد» است که دور ملخ و موتور را نشان می دهد و در زمانی که اختلالی دردور موتور و یا ملخ ایجاد می شود، به خلبان هشدار می دهد.
وی با بیان اینکه این سیستم در گذشته از خارج وارد می شده است،افزود: در حال حاضر با استفاده از دانش بومی موفق به تولید این تسترهابرای چهار نوع بالگرد 205 ، 214 ، کبری و شینوک شده ایم
__________________
پاینده باد ایران و ایرانی

ارسال شده در توسط ملیحه ماندنی پور

آشنایی با کامپوزیتها

http://www.hik.hu/tankonyvtar/site/books/b10125/images/14_28.jpg

در کاربردهای مهندسی، اغلب به تلفیق خواص مواد نیاز است. به عنوان مثال در صنایع هوافضا، کاربردهای زیر آبی، حمل و نقل و امثال آنها، امکان استفاده از یک نوع ماده که همه خواص مورد نظر را فراهم نماید، وجود ندارد. به عنوان مثال در صنایع هوافضا به موادی نیاز است که ضمن داشتن استحکام بالا، سبک باشند، مقاومت سایشی و UV خوبی داشته باشند و ....
از آنجا که نمی توان ماده‌ای یافت که همه خواص مورد نظر را دارا باشد، باید به دنبال چاره‌ای دیگر بود. کلید این مشکل، استفاده از کامپوزیتهاست.

کامپوزیتها موادی چند جزئی هستند که خواص آنها در مجموع از هرکدام از اجزاء بهتر است.ضمن آنکه اجزای مختلف، کارایی یکدیگر را بهبود می‌بخشند. اگرچه کامپوزیتهای طبیعی، فلزی و سرامیکی نیز در این بحث می‌گنجند، ولی در اینجا ما تنها به کامپوزیتهای پلیمری می‌پردازیم.

در کامپوزیتهای پلیمری حداقل دو جزء مشاهده می‌شود :

1- فاز تقویت کننده که درون ماتریس پخش شده است.
2- فاز ماتریس که فاز دیگر را در بر می‌گیرد و یک پلیمر گرماسخت یا گرمانرم می‌باشد که گاهی قبل از سخت شدن آنرا رزین می‌نامند.

تقسیم بندی‌های مختلفی در مورد کامپوزیتها انجام گرفته است که در اینجا یکی از آنها را آورده‌ایم:

Composite

خواص کامپوزیتها به عوامل مختلفی از قبیل نوع مواد تشکیل دهنده و ترکیب درصد آنها، شکل و آرایش تقویت کننده و اتصال دو جزء به یکدیگر بستگی دارد.
از نظر فنی، کامپوزیتهای لیفی، مهمترین نوع کامپوزیتها می باشند که خود به دو دستة الیاف کوتاه و بلند تقسیم می‌شوند. الیاف می‌بایست استحکام کششی بسیار بالایی داشته، خواص لیف آن (در قطر کم) از خواص توده ماده بالاتر باشد. در واقع قسمت اعظم نیرو توسط الیاف تحمل می‌شود و ماتریس پلیمری در واقع ضمن حفاظت الیاف از صدمات فیزیکی و شیمیایی، کار انتقال نیرو به الیاف را انجام می‌دهد. ضمناَ ماتریس الیاف را به مانند یک چسب کنار هم نگه می‌دارد و البته گسترش ترک را محدود می‌کند. مدول ماتریس پلیمری باید از الیاف پایینتر باشد و اتصال قوی بین الیاف و ماتریس بوجود بیاورد. خواص کامپوزیت بستگی زیادی به خواص الیاف و پلیمر و نیز جهت و طول الیاف و کیفیت اتصال رزین و الیاف دارد. اگر الیاف از یک حدی که طول بحرانی نامیده می‌شود، کوتاهتر باشند، نمی‌توانند حداکثر نقش تقویت کنندگی خود را ایفا نمایند.

الیافی که در صنعت کامپوزیت استفاده می‌شوند به دو دسته تقسیم می‌شوند:
الف)الیاف مصنوعی
ب)الیاف طبیعی

کارایی کامپوزیتهای پلیمری مهندسی توسط خواص اجزاء آنها تعیین میشود. اغلب آنها دارای الیاف با مدول بالا هستند که در ماتریسهای پلیمری قرار داده شدهاند و فصل مشترک خوبی نیز بین این دو جزء وجود دارد.
ماتریس پلیمری دومین جزء عمده کامپوزیتهای پلیمری است. این بخش عملکردهای بسیار مهمی در کامپوزیت دارد. اول اینکه به عنوان یک بایندر یا چسب الیاف تقویت کننده را نگه میدارد. دوم، ماتریس تحت بار اعمالی تغییر شکل میدهد و تنش را به الیاف محکم و سفت منتقل میکند.
سوم، رفتار پلاستیک ماتریس پلیمری، انرژی را جذب کرده، موجب کاهش تمرکز تنش میشود که در نتیجه، رفتار چقرمگی در شکست را بهبود میبخشد.
تقویت کنندهها معمولا شکننده هستند و رفتار پلاستیک ماتریس میتواند موجب تغییر مسیر ترکهای موازی با الیاف شود و موجب جلوگیری از شکست الیاف واقع در یک صفحه شود.
بحث در مورد مصادیق ماتریسهای پلیمری مورد استفاده درکامپوزیتها به معنای بحث در مورد تمام پلاستیکهای تجاری موجود میباشد. در تئوری تمام گرماسختها و گرمانرمها میتوانند به عنوان ماتریس پلیمری استفاده شوند. در عمل، گروههای مشخصی از پلیمرها به لحاظ فنی و اقتصادی دارای اهمیت هستند.
در میان پلیمرهای گرماسخت پلیاستر غیر اشباع، وینیل استر، فنل فرمآلدهید(فنولیک) اپوکسی و رزینهای پلی ایمید بیشترین کاربرد را دارند. در مورد گرمانرمها، اگرچه گرمانرمهای متعددی استفاده میشوند، PEEK ، پلی پروپیلن و نایلون بیشترین زمینه و اهمیت را دارا هستند. همچنین به دلیل اهمیت زیست محیطی، دراین بخش به رزینهای دارای منشا طبیعی و تجدیدپذیر نیز، پرداخته شده است.

از الیاف متداول در کامپوزیتها می‌توان به شیشه، کربن و آرامید اشاره نمود. در میان رزینها نیز، پلی استر، وینیل استر، اپوکسی و فنولیک از اهمیت بیشتری برخوردار هستند. در بخشهای بعدی، رزینها و الیاف و روشهای شکل دهی کامپوزیتها را مورد بحث قرار داده‌ایم


ادامه مطلب
نوشته شده توسط محمدامین بائی ?.???? ???? در ساعت  | لینک  |  < type=text/java>GetBC(355); آرشیو نظرات
Sat 18 Oct 2008


تعیین مشخصه های سیستم پیشرانش در میکروپرنده ها 

کلمات کلیدی : میکروپرنده، مشخصه‌های سیستم پیشرانش، آزمایشات تونل باد، بهینه‌سازی ملخ.


ادامه مطلب
نوشته شده توسط محمدامین بائی ?.???? ???? در ساعت  | لینک  |  < type=text/java>GetBC(354); آرشیو نظرات
Fri 17 Oct 2008


ریز پرنده جاسوسی شبیه به د ایناسورهای پرنده ساخته شد.


ادامه مطلب
نوشته شده توسط محمدامین بائی ?.???? ???? در ساعت  | لینک  |  < type=text/java>GetBC(353); آرشیو نظرات
Wed 15 Oct 2008


تلسکوپ هابل دوباره به کار می افتد

??????????? “http://www.friedhelm-hundt.de/mediac/400_0/media/habel.jpg” ?? ????? ???? ????????, ??? ??? ???????? ??????.


ادامه مطلب
نوشته شده توسط محمدامین بائی ?.???? ???? در ساعت  | لینک  |  < type=text/java>GetBC(352); آرشیو نظرات
Tue 14 Oct 2008


استراتژی جنگ دقیق (2)- تسلیحات هدایت شونده (PGM)

http://mili.co.kr/munitions/Missiles/us/AGM/agm158/img/yanagi.0kr.net_JASSM_02.jpg

 


ادامه مطلب
نوشته شده توسط محمدامین بائی ?.???? ???? در ساعت  | لینک  |  < type=text/java>GetBC(351); آرشیو نظرات
Mon 13 Oct 2008


 

 

برنامه های هفته جهانی فضا در کشور


ادامه مطلب
نوشته شده توسط محمدامین بائی ?.???? ???? در ساعت  | لینک  |  < type=text/java>GetBC(350); آرشیو نظرات
Sat 11 Oct 2008


پایه گذاران ساخت هواپیما<\/h1>

هواپیماهای آینده


ادامه مطلب

نوشته شده توسط محمدامین بائی ?.???? ???? در ساعت  | لینک  |  < type=text/java>GetBC(349); آرشیو نظرات
Sat 11 Oct 2008


گلایدرها؛هواپیماهای بی موتور(2)<\/h1>

 http://www.glider-pilot.co.uk/more%20about%20gliding/Glider%20l.jpg



ارسال شده در توسط ملیحه ماندنی پور
 

نوع سیستم و درجه پخت، مهم‌ترین عوامل تعیین‌کننده خواص فیزیکی، مکانیکی و شیمیایی درزگیرهای پلی سولفایدی هستند. این پلیمر مایع، دارای سیستم‌های پخت متنوعی است که بنابر نوع سیستم پخت و اجزای کامپاند متناسب با آن سیستم، نوع مصرف نهایی آنها تعیین می‌شود. یکی از عوامل پخت این درزگیرها که استفاده از آنها را در مخازن سوخت لاستیکی میسر می‌سازد، دی‌اکسید منگنز است. اجزای فرمولاسیون برای دستیابی به خواص مناسب، یکی از اساسی‌ترین مسائل در مورد ساخت درزگیرهای دوجزئی است. بررسی درصد تأثیرات این اجزا بر خواص فیزیکی و مکانیکی آمیزه‌ها، نشان می‌دهد که هر کدام از این اجزا، بنا به نوع سیستم پخت تاثیرات متفاوتی بر این خواص دارند. آزمایشات در این تحقیق، بر مبنای روش تاگوچی طراحی شده و آزمون‌های خواص یادشده برای هر آزمایش انجام شده است و نتایج حاصله موردتجزیه و تحلیل قرار گرفته‌اند.

منظور از پلیمرهای پلی‌سولفاید، پلیمرهای آلیفاتیک دارای پیوندهای گوگردی در زنجیره اصلی پلیمر است. این اتصالات می‌توانند دو، سه و... گوگردی باشند. پلیمرهای پلی‌سولفایدی، شامل الاستومرهای جامد با وزن مولکولی بالا، پلیمرهای مایع با وزن مولکولی پایین و محلول‌های آبی این الاستومرها و یا پلیمرهای مایع هستند. در این میان، بیشترین کاربرد را پلیمرهای پلی‌سولفاید مایع دارند و در تولید درزبندها[1] به کار می‌روند. از جمله خواص منحصر بفرد این درزبندها که در هیچ درزبند دیگری دیده نشده و باعث شده است تمایل زیادی به استفاده از آنها در صنایعی حساس مانند هوافضا (که عمده‌ترین مصرف این درزبندها را دارا است) به‌وجود آید، خاصیت خود ترمیمی[2] آنهاست که به دلیل جابجایی‌های بین مولکولی باندهای گوگرد-گوگرد و یا واکنش آنها با گروه‌های «مرکاپتان» باقی مانده رخ می‌دهد. همین خاصیت، موجب می‌شود که این درزبندها به درزبندهای از قبل پخت شده چسبندگی خوبی داشته باشند. لذا هنگام تعمیرات، هزینه و آسیب کمتری متوجه تجهیزات، از قبل درزبندی شده می‌شود. کاربردهای آنها در صنایع هوافضا در آب‌بندی مخازن سوخت و کابین‌های تحت فشار، درزبندی اتصالات موجود در بال، بدنه و اطراف پنجره‌ها و نیز محافظت از لوازم الکتریکی است. نوع سیستم پخت و درجه پخت، از مهم‌ترین عوامل تعیین‌کننده خواص فیزیکی، مکانیکی و شیمیایی محصول نهایی است. ساختار منحصر بفرد زنجیره اصلی پلیمرهای پلی‌سولفاید، سهم بسزایی در خواص مطلوب محصولات ساخته شده توسط این ماده را دارد. خواص درزبندهای ساخته شده از این پلیمر عبارتند از: مقاومت شیمیایی و مقاومت در برابر حلال‌ها و سوخت‌ها، انعطاف‌پذیری خوب و چسبندگی به بسیاری از سطوح نظیر استیل، آلومینیم، شیشه، لاستیک‌ها، بتون، چوب و... از نارسایی‌های این درزبندها می‌توان به پایین بودن مقاومت حرارتی و مقاومت در برابر خزش و بوی بد اشاره کرد که با فرمولاسیون مناسب می‌توان این مسائل را تا حد زیادی برطرف کرد. مقاومت در برابر فرسودگی و سیالات و انعطاف‌پذیری در دمای پایین متناسب با درصد پلیمر موردمصرف در فرمولاسیون محصول است. با توجه به حساسیت کاربرد در درزبندهای هواپیما و سایر وسائل موردمصرف در صنایع هوافضا (عمده‌ترین کاربرد این پلیمر) درصد وزنی پلیمر در کامپاند بالای 60درصد است. به همین دلیل درجه پخت و سیستم پخت به‌کار گرفته شده که استحکام‌دهنده پلیمر پایه‌اند، اساسی‌ترین نقش را در خواص فیزیکی و مکانیکی محصول نهایی خواهند داشت.

عبارتی که عموماً برای انتشار زنجیر و اتصالات عرضی پلیمرهای مایع در چسب‌ها و درزبندها استفاده می‌شود، «پخت»[3] است. پخت در واقع همان فرایند vulcanization است که فرایندی برگشت‌ناپذیر از اتصالات بین مولکولی زنجیرهای پلیمری و ایجاد شبکه‌ای سه بعدی می‌باشد. باید توجه داشت که پخت از این دست، به معنای تبخیر حلال نیست.

 

پخت بر اثر اکسیداسیون

لاستیک پلی‌سولفاید دارای گروه‌های هیدروکسیل، توسط اکسید روی، پخت می‌شود. این در حالی است که لاستیک دارای ساختاری نظیر پلیمرهای مایع تجاری، با استفاده از پراکسید روی، پخت می‌شود. فرایند اخیرالذکر که اکسیداسیون گروه‌های انتهایی و شاخه‌ای مرکاپتان و تشکیل باندهای دی‌سولفاید است. (شکل1) اساس پخت برای اکثر درزبندها و پوشش‌های تجاری مبتنی بر پلیمرهای پلی‌سولفاید مایع است.

شکل1: مکانیسم پخت پلیمرهای پلی سولفاید

 

دی‌اکسید منگنز به‌عنوان عامل پخت

یکی از رایج‌ترین عوامل پخت در تکنولوژی پلی‌سولفایدها، دی‌اکسیدمنگنز است. (اکسید منگنزIV) که در درزبندها بخش شیشه‌های عایق و هواپیما کاربرد دارند. برای پی بردن به ساختار دی‌اکسید منگنز و مکانیزم پخت آن، روش رزونانس پارامغناطیسی الکترون (EPR) به‌کارگرفته می‌شود. با بررسی تغییرات سیگنال‌های حاصل از پخت پلی‌سولفاید توسط دی‌اکسید منگنز، هر دو مکانیزم رادیکال آزاد[4] و تراکمی[5] در کنار هم برای این پخت پیشنهاد شده‌اند. در آزمایشات، وقتی درصد اکسیژن موجود کاهش می‌یابد، می‌توان توسط تکنیک‌های اسپینی، درصد و انواع رادیکال‌های آزادی را که در واکنش دی‌اکسید منگنز فعال با پلی‌سولفاید با گروه انتهایی مرکاپتان و یا با گروه‌های مرکپتاید وجود دارند، مشخص کرد. رادیکال تیل ) ( تشکیل شده از SH- به وجود آمده است و نه از تجزیه SS-- و پخت بر اثر اتصال تعداد زیادی از رادیکال‌ها به وجود می‌آید. در آزمایشاتی که اکسیژن زیادی در آنها وجود دارد، عمر رادیکال‌های آزاد کاهش می‌یابد، اکسیژن مصرف می‌شود و سرعت پخت تشدید می‌یابد. آنالیز توسط NMR نشان می‌دهد که محصول با آنچه که در آزمایش تهی از اکسیژن به دست می‌آید، تفاوتی ندارد. در آزمایشات اسپینی دیگری که انجام شد، رادیکال‌های و و و نیز آنیون رادیکال - مشخص شدند. شکل2، مکانیسم پخت پلی‌سولفایدها توسط دی‌اکسید منگنز را نشان می‌دهد.

 

شکل2: واکنش‌های پخت پلی سولفایدها توسط MnO2

معرفی مواد و تجهیزات مورداستفاده

رزین پلی‌سولفاید مورد مصرف از نوع NVB II ساخت شرکت کازان[6] روسیه، دوده SRF ساخت کربن پارس، کربنات کلسیم کوت شده وینداور ایرانی، سیلیکا Cabosil ساخت cobat امریکا، روغن پارافین کلره، ساخت شرکت C.P.Hall امریکا، دی‌اکسید منگنز ساخت Kychem چین، و شتابدهنده‌های TMTD و DPG به ترتیب vulkacit thioram و vulkacit D ساخت شرکت Bayer AG آلمان، استئاریک اسید ساخت Natoleo مالزی، رزین فنولیک ساخت BASF آلمان و آب‌مقطر.

رئومتر MDR2000 ساخت شرکت Monsanto برای تعیین زمان پخت (t90 در 60درجه سانتی‌گراد)، زمان برشتگی و ماکزیمم و مینیمم گشتاور برشی. دستگاه کشش Instron 1114 برای اندازه‌گیری استحکام کششی، درصد افزایش طولی، استحکام برشی و مقاومت پوستگی. دستگاه سختی‌سنج Zwick 3100 از نوع Shore A برای تعیین سختی.

تمام آزمون‌های یادشده، برطبق استاندارد AMS3269 (تدوین شده در 1993) انجام شد.

 

طراحی آزمایشات و کارهای تجربی

اجزای کامپاند برای بررسی میزان تاثیر بر خواص، مطابق با جدول 1 انتخاب شدند. این جدول، شامل اجزای متغیر در هر فرمولاسیون به همراه سطح تغییرات هر یک از آنهاست. مقادیر داده شده برحسب phw (قسمت نسبت به صد قسمت وزنی رزین پلی‌سولفاید) است. با توجه به روش تاگوچی در طراحی آزمایشات، برای این تعداد متغیر با سطوح تعیین شده جدول استاندارد طراحی آزمایشات برابر آرایه‌های متعامد L32 وجود دارد.

جدول1: متغیرهای موردبررسی و سطح تغییرات هر یک

با توجه به ترکیبات تعیین شده از سطوح توسط جدول آرایه‌های استاندارد M32، تعداد 32 کامپاند به دست آمد که در جدول 2 درصد ترکیب اجزا در مقابل شماره کامپاند مربوطه، آمده است. در تمام کامپاندها، اجزای مشخص شده با 100قسمت رزین پلی‌سولفاید ترکیب شدند. ترتیب اختلاط به این صورت بود که ابتدا اجزای شتابدهنده و عامل پخت به همراه قسمتی از روغن ترکیب شده و کامپاند پخت را تشکیل دادند. رزین پلی‌سولفاید نیز با دوده (SRF black)، کربنات کلسیم، سیلیکا (Cabosil)، اسید استئاریک و درصدی از روغن پارافین کلره، مخلوط شد و کامپاند پایه را تشکیل داد. سپس دو جزء را با یکدیگر مخلوط کرده و آمیزه نهایی در دمای 60درجه سانتی‌گراد، پخت شد.

 

نتیجه‌گیری و بحث

نتایج حاصل از هر یک از آزمایشات انجام شده (جدول 2) توسط روش‌های آماری (روش تاگوچی) مورد آنالیز و بررسی قرار گرفت و سهم هر یک در هر آزمون تعیین شد. بر این اساس، کامپاند بهینه‌ای که تامین‌کننده خواص موردنظر است، طراحی گردید. در شکل 3 نحوه تغییرات درصد تورم، سختی و استحکام پوستگی به صورت شماتیک (در سه ردیف برای بررسی مقایسه بهتر) آمده است.

جدول2 : نتایج آزمونهای خواص بر روی آمیزه های طرح در سیستم MnO2

مشاهده می‌کنید که چگونگی تغییر این سه خاصیت در هر آمیزه، تقریباً نزدیک به هم بوده و بروز برخی تفاوت‌های موجود، به دلیل نوع اثر بعضی از مواد به واسطه واکنش‌های شیمیایی استوکیومتریک و یا فعالیت سطحی هر یک از اجزا (که تعیین‌کننده میزان اختلاط و یا ضریب انباشتگی در نمونه می‏باشد) بوده است. اثر کربنات کلسیم در سختی تورم و استحکام پوستگی، به عنوان نمونه در شکل 4 ارائه شده است.

با بررسی نوع شکست استحکام پوستگی، مشخص شد که تنها عامل افزایش‌دهنده چسبندگی (رزین فنولیک) تعیین‌کننده نیست، هر چند که با افزایش این عامل، نوع شکست چسبی[7] به مراتب کاهش می‌یابد.

افزایش MnO2 تا 5 پارت، موجب افزایش خواص و کاهش نسبی سرعت پخت می‌شود. بعد از این مقدار، شاهد کاهش در استحکام نمونه و همچنین افزایش درصد تورم خواهیم بود که بیانگر مقدار بحرانی در استفاده از این عامل پخت می‌باشد.

با بررسی دیگر عوامل مشخص می‌شود عواملی که در پخت اثر تاخیردهندگی دارند، به ترتیب عبارتند از: اسیداستئاریک، رزین فنولیک و سیلیکا که این مورد، ناشی از ماهیت اسیدی مواد ذکر شده بوده و باعث می‌شود در درجات حرارت بالا و فشار زیاد، واکنش‌های هیدرولیز و تخریب پلیمر، افزایش یابند. برعکس، آب، DPG و TMTD به ترتیب اثر تسریع‌کنندگی بر پخت دارند. با بررسی‌های انجام شده، فرمولاسیونی که دربرگیرنده بهینه‌ای از خواص می‌باشد، طراحی شد (جدول3).

جدول3: فرمولاسیون نهایی طراحی شده برای سیستم پخت MnO2

 

شکل4: نحوه تأثیرات کربنات کلسیم بر خواص آمیزه در سیستم Mno2

منابع:

1. George Odian ,"Principles of polymerization" John Wiley & Sons, Inc, New York, 1991

2. C.Eniss, P.J. Hanhela, R.H.E.Hung, G.J.Long and D.Bernton paul, "General procedures to determine the composition of commercial, two part polysulfide aircraft sealants", J. of applied polymer science, vol. 41,pp. 2837-2856, 1990.

3. Aliphatic polysulfides, a monograph by Heinz Lucke-Huthing and Wepf. Verlag. Heidelberg. 1994.

4. G.B.Lowe, "The cure chemistry of polysulfides", Int. J.Adhesion and Adhesives, 19,pp.345-348,1997.

5. J.R.Panek, "Polysulfide Sealants and Adhesives", Handbook of adhesives, I.Skeits, Ed, chap 16,pp. 307-315,1990.



[1]. Sealants

[2]. Self- repair

[3] cure

[4]. Free radical

[5]. Polycondensation

[6]. Kazan

[7]. Adhesive


ارسال شده در توسط ملیحه ماندنی پور
پلیمرها، بخش عمده ای از مشتقات نفتی هستند که در انواع مختلف در صنعت پتروشیمی، تولید و در صنایع گوناگون مورد استفاده قرار می گیرند.

امروزه استفاده از پلیمرها به اندازه ای رایج شده که می توان گفت بدونِ استفاده از آنها بسیاری از حوایج روزمره ما مختل خواهد شد. مقاله حاضر، پلیمرهای مقاوم حرارتی را مورد مطالعه قرار می دهد که علاوه بر مصارف متعدد، در صنایع هوا- فضا نیز نقش عمده ای ایفا می کنند.

پلیمرها، بخش عمده ای از مشتقات نفتی هستند که در انواع مختلف در صنعت پتروشیمی، تولید و در صنایع گوناگون مورد استفاده قرار می گیرند. امروزه استفاده از پلیمرها به اندازه ای رایج شده که می توان گفت بدونِ استفاده از آنها بسیاری از حوایج روزمره ما مختل خواهد شد. مقاله حاضر، پلیمرهای مقاوم حرارتی را مورد مطالعه قرار می دهد که علاوه بر مصارف متعدد، در صنایع هوا- فضا نیز نقش عمده ای ایفا می کنند. هنگامی که ترکیبات آلی در دمای بالا حرارت داده می شوند، به تشکیل ترکیبات آروماتیک تمایل پیدا می کنند. بنابراین می توان 7ا در صنایع هوا- فضا مورد استفاد?د در مقابل دماهای بالا مقاوم باشند. انواع وسیعی از پلیمرها که واحد های تکراری آروماتیک دارند، در سالهای اخیر توسعه و تکامل داده شده اند.

این پلیمرها در صنایع هوا- فضا مورد استفاده قرار می گیرند، زیرا در برابر دمای زیاد پایداری مطلوبی از خود نشان می دهند. برای این که یک پلیمر در برابر حرارت و در برابر گرما مقاوم تلقی شود، نباید در زیر دمای ??? درجه سانتی گراد تجزیه شود. هم چنین باید خواص مورد نیاز و سودمند خود را تا دماهای نزدیک به دمای تجزیه حفظ کند. این گونه پلیمرها دارای Tg بالا و دمای ذوب بالا هستند. پس می توان گفت پلیمرهای مقاوم حرارتی به پلیمرهایی گفته می شود که در دمای بالا بکار برده می شوند، به طوری که خواص مکانیکی، شیمیایی و ساختاری آنها، با خواص سایر پلیمرها در دماهای پایین متفاوت باشد. پلیمرهای مقاوم حرارتی به طور عمده در صنایع اتومبیل سازی، صنایع هوا- فضا، قطعات الکترونیکی، عایق ها، لوله ها، انواع صافی ها، صنایع آشپزی و خانگی، چسب ها و پوشش سیم های مخصوص مورد استفاده قرار می گیرد. پلیمرهای یاد شده هم به روش آلی و هم به روش معدنی تهیه می شوند. ذکر این نکته مهم است که روش آلی متداول تر و اغلب پژوهش ها توسط دانشمندان پلیمر در این زمینه ها به ثمر رسیده است.



پایداری حرارتی
پایداری حرارتی پلیمرها، تابع فاکتورهای گوناگونی است. از آنجا که مقاومت حرارتی تابعی از انرژی پیوندی است، وقتی دما به حدی برسد که باعث شود پیوندها گسیخته شوند، پلیمر از طریق انرژی ارتعاشی شکسته می شود. پس پلیمرهایی که دارای پیوند ضعیفی هستند در دمای بالا قابل استفاده نیستند و از بکار بردن منومرها و هم چنین گروه های عاملی که باعث می شود این پدیده تشدید شود، باید خودداری کرد.

البته گروه هایی مانند اتر یا سولفون، نسبت به گروه هایی مانند آلکیل و NH و OH پایدارتر هستند، ولی وارد کردن گروه هایی مانند اتروسولفون و یا گروههای پایدار دیگر صرفاً بخاطر بالا بردن مقاومت حرارتی نیست، بلکه باعث بالا رفتن حلالیت نیز می شوند. تاثیرات متقابلی که بین دو گونه پلیمری وجود دارد، ناشی از تاثیرات متقابل قطبی- قطبی، و پیوند هیدروژنی (?-?? Kcal/mol) است که باعث بالا رفتن مقاومت حرارتی در پلیمرها می شوند. این قبیل پلیمرها باید قطبی و دارای عامل هایی باشند که پیوند هیدروژنی را بوجود آورند، مانند: پلی ایمیدها و پلی یورتانها. انرژی رزونانسی که به وضوح در آروماتیک ها به چشم می خورد، مخصوصاً در حلقه های هتروسیکل و فنیلها و کلاً پلیمرهایی که استخوان بندی آروماتیکی دارند باعث افزایش مقاومت حرارتی می شوند.

در مورد واحدهای تکراری حلقوی، شکستگی یک پیوند در یک حلقه باعث پایین آمدن وزن مولکولی نمی شود و احتمال شکستگی دو پیوند در یک حلقه کم است. پلیمرهای نردبانی یا نیمه نردبانی پایداری حرارتی بالاتری نسبت به پلیمرهای زنجیره باز دارند. بنابراین اتصالات عرضی موجب صلب پلیمرهای خطی می شوند که شامل حلقه های آروماتیک با چند پیوند یگانه مجزا هستند. با توجه به نکاتی که ذکر شد برای تهیه پلیمرهای مقاوم حرارتی باید نکات زیر رعایت شوند.
- استفاده از ساختارهایی که شامل قوی ترین پیوند های شیمیایی هستند. مانند ترکیبات هتروآروماتیک، آروماتیک اترها و عدم استفاده از ساختارهایی که دارای پیوند ضعیف مثل آلکیلن- آلیسیکلیک و هیدروکربن های غیر اشباع می باشند.

- ساختمان ترکیب باید به گونه ای باشد که به سمت پایدار بودن میل کند، پایداری رزونانسی آن زیاد باشد و بالاخره ساختارهای حلقوی باید طول پیوند عادی داشته باشند، به نحوی که اگر یک پیوند شکسته شد، ساختار اصلی، اتم ها را کنار هم نگه دارد.



لباس فضا نوردان
امروزه در زمینه پلیمرهای مقاوم حرارتی پیشرفت های زیادی حاصل شده است. پژوهشگری به نام کارل اسی مارول که یک محقق برجسته در زمینه مقاومت حرارتی پلیمرها است، باعث توسعه تجارتی پلی بنزایمیدازول، با نام تجارتی PBI ، شده است که به شکل الیاف برای تهیه لباس فضانوردان مورد استفاده قرار می گیرد. البته این تنها یکی از موارد کاربردهای متنوع پلیمرهای مقاوم حرارتی در برنامه های فضایی است. بی تردید اگر سالها پژوهش علمی و آزمایش های گوناگون موجب کشف الیاف پلیمری مقاوم برای تهیه لباس فضا نوردان نمی شد، هیچ فضا نوردی نمی توانست به فضا سفر کند.

طی سال های اخیر گونه های وسیعی از پلیمرهای آروماتیک و آلی فلزی مقاوم در برابر گرما، توسعه و تکامل داده شده اند، که تعداد کمی از آنها به علت قیمت بالای آنها در تجارت قابل قبول نبوده اند. پلیمرهای آروماتیک، به خاطر اسکلت ساختاری صلب، دمای گذار شیشه ای Tg و ویسکوزیته بالا، قابلیت حلالیت کم دارند، بنابراین سخت تر از سایر پلیمرها هستند. در حال حاضر بالاترین حد مقاومت گرمایی از پلیمرهای آلی بدست آمده است، بنابراین در سال های اخیر تاکید روی معرفی تفاوت های ساختاری پلیمرها بوده است.

پیوستن گروه های انعطاف پذیر مانند اتر یا سولفون در اسکلت، یک راهکار است. هر چند این اقدامات باعث حلالیت بیشتر، ویسکوزیته کمتر و معمولاً پایداری حرارتی کم می شود. نگرش دیگر برای وارد کردن گروههای آروماتیک حلقه ای این است که به صورت عمودی در اسکلت صفحه ای آروماتیک قرار می گیرد. همان طور که در پلی بنزایمیدازول اشاره شد این ساختارها که »کاردو پلیمر« نامیده می شوند معمولاً پایداری بالایی دارند، بدون این که خواص دمایی آنها از بین برود. وارد کردن اسکلت با گروههای فعال که در اثر گرما موجب افزایش واکنش حلقه ای بین مولکولی می شوند، راهی دیگر برای پیشرفت روندکار است.

مهم ترین و پرمحصول ترین راه از نقطه نظر توسعه تجارتی، سنتز الیگومرهای آروماتیک یا پلیمرهایی است که با گروههای پایانی فعالی، خاتمه داده شده اند. الیگومرهایی که انتهای آنها فعال شده اند، در دمای نسبتاً پایین ذوب می شوند و در انواع حلال ها نیز حل می شوند. هم چنین در موقع حرارت دادن به پلیمرهای شبکه ای پایدار تبدیل می شوند.



مقاومت در برابر حرارت
هنگامی که از پلیمرهای مقاومت حرارتی صحبت می شود باید مقاومت حرارتی آنها را برحسب زمان و دما تعریف کنیم. افزایش هر کدام از فاکتورهای ذکر شده موجب کاهش طول عمر پلیمر می شود و اگر هر دو فاکتور افزایش یابند طول عمر به صورت لگاریتمی کاهش می یابد. به طور کلی اگر یک پلیمر به عنوان پلیمر مقاوم حرارتی در نظر گرفته می شود، باید به مدت طولانی در ??? درجه سانتی گراد، در زمان های متوسط در پانصد درجه سانتی گراد و در کوتاه مدت در دمای یکهزار درجه سانتی گراد خواص فیزیکی خود را حفظ کند. به طور دقیق تر یک پلیمر مقاوم حرارتی باید طی سه هزار ساعت و در حرارت ??? درجه سانتی گراد، یا طی یکهزار ساعت در ??? درجه سانتی گراد، یا طی یک ساعت در ??? درجه سانتی گراد و یا طی ? دقیقه در ??? درجه سانتی گراد، خواص فیزیکی خود را از دست ندهد.

برخی از شرایط ضروری برای پلیمرهای مقاوم حرارتی، بالا بودن نقطه ذوب، پایداری در برابر تخریب اکسیداسیونی در دمای بالا، مقاومت در برابر فرآیندهای حرارتی و واکنش گرمای شیمیایی است. سه روش اصلی برای بالا بردن مقاومت حرارتی پلیمرها وجود دارد. افزایش بلورینگی، افزایش اتصال عرضی و حذف اتصال های ضعیفی که در اثر حرارت اکسید می شوند. افزایش بلورینگی، کاربرد پلیمرها را در دمای بالا محدود می کند. زیرا موجب کاهش حلالیت و اختلال در فرآورش می شود. برقرار کردن اتصال های عرضی در الیگومرها روش مناسبی است و خواص پلیمر را به طور واقعی اما غیر قابل برگشت تغییر می دهد.

اتصالاتی که باید حذف شود شامل اتصال های آلکیلی، آلیسیکلی، غیر اشباع و هیدروکربن های غیر آروماتیک و پیوند NH است . اما اتصالاتی که مفید است شامل سیستم های آروماتیکی، اتر، سولفون و ایمید و آمیدها هستند. این عوامل پایدار کننده به صورت پل در ساختار پلیمر واقع و موجب پایداری آنها می شوند. از طرفی ضروری است که پلیمر از قابلیت به کار گیری و امکان فرآورش مناسب برخوردار باشد.

پس باید تغییرات ساختاری طوری باشد که حلالیت و فرآورش مناسب تر داشته باشند. برای این منظور باید از واحد های انعطاف پذیرِ اتر، سولفون، آلکیل و همچنین از کوپلیمره کردن، و تهیه ساختارهایی با زنجیر نامنظم استفاده کرد.به طور کلی پلیمرهای مقاوم حرارتی به چهار دسته تقسیم می شوند. پلیمرهای تراکم ساده، مانند پلیمرهایی که از حلقه آروماتیک تشکیل شده اند و با اتصالات تراکمی به یکدیگر متصل هستند. پلیمرهای هتروسیکل، یعنی پلیمرهایی که از حلقه های آروماتیک تشکیل شده اند اما از طریق حلقه های هتروسیکل به هم وصل شده اند. کوپلیمرهای ترکیبی تراکمی هتروسیکل، یعنی پلیمرهایی که شامل ترکیبی از اتصال های تراکمی ساده و حلقه های هتروسیکل می باشند و پلیمرهای نردبانی که شامل دو رشته زنجیر هستند.
alireza685 آفلاین است  

ارسال شده در توسط ملیحه ماندنی پور
<      1   2   3   4   5   >>   >