سفارش تبلیغ
صبا ویژن

دنیای فناوری و اطلاعاتpolymer (شیمی.نانو.مکانیک.پلاستیک.لاستیک.)


عاشق آسمونی
عاشقان
لحظه های آبی
پرسه زن بیتوته های خیال
وبلاگ شخصی محمدعلی مقامی
هو اللطیف

● بندیر ●
مهندسی پلیمر(کامپوزیت.الاستومر. پلاستیک.چسب ورزین و...)
بی عشق!!!
آخرین روز دنیا
مُهر بر لب زده
%% ***-%%-[عشاق((عکس.مطلب.شعرو...)) -%%***%%
کانون فرهنگی شهدا
یک کلمه حرف حساب
روانشناسی آیناز
داشگاه آزاد دزفول
.: شهر عشق :.
بانک اطلاعاتی خودرو
فقط عشقو لانه ها وارید شوند
پتی آباد سینمای ایران
منطقه آزاد
رازهای موفقیت زندگی
نور
توشه آخرت
عشق الهی: نگاه به دین با عینک محبت، اخلاق، عرفان، وحدت مسلمین
محمد قدرتی Mohammad Ghodrati
گروه اینترنتی جرقه داتکو
نهِ/ دی/ هشتاد و هشت
راه های و فواید و تاثیر و روحیه ... خدمتگذاری
ایـــــــران آزاد
پزشک انلاین
این نجوای شبانه من است
رویابین
* روان شناسی ** ** psychology *
حباب زندگی
ثانیه
دست نوشته
در تمام بن بستها راه آسمان باز است
مهندسی متالورژِی
دوزخیان زمین
پایگاه اطلاعاتی و کاربردی شایگان
mansour13
به دلتنگی هام دست نزن
حقوق و حقوقدانان
هامون و تفتان
قلب خـــــــــــــــــــــــــــاکی
کشکول
وبلاگ تخصصی مهندسی عمران
خبرهای داغ داغ
باران کوثری
عشق صورتی
دنیای بهانه
عشق طلاست
خانه اطلاعات
من هیچم
قدرت ابلیس
غلط غولوت
انجمن مهندسان ایرانی
just for milan & kaka
چالوس و نوشهر
نامه ی زرتشت
دنیای واقعی
تارنما
سامانتا
دختر و پسر ها وارد نشند اینجا مرکز عکس های جدید ودانلوده
محرما نه
موتور سنگین ... HONDA - SUZUKI ... موتور سنگین
ماهیان آکواریمی
قدرت شیطان
.... تفریح و سرگرمی ...
عد ل
راز و نیاز با خدا
عاشقان میگویند
جزیره ی دیجیتالی من
خلوت تنهایی
پرسش مهر 9
نـــــــــــــــــــــــــــــور خــــــــــــــــــــــــــــدا
اس ام اس عاشقانه
طوبای طوی
قلم من توتم من است . . .
منتظران دل شکسته
محمدرضا جاودانی
روح .راه .ارامش
اهلبیت (ع)
::::: نـو ر و ز :::::
باور
در سایه سار وحدت
چشمای خیس من
جالبــــــــــات و ....
دنیای پلیمر
کسب در آمد از اینترنت
سخنان برگزیده دکتر شریعتی
شناسائی مولکول های شیمیائی
بانک اطلاعات نشریات کشور
استاد سخن پرداز
لینکستان
سایت تخصصی اطلاع رسانی بازیافت
صنعت خودرو
پلیمرهای نوری
انجمن های تخصصی مهندسی پزشکی
سایت تخصصی پلیمر
مهندسی صنایع پلیمر
فرشته ای در زمین
نجوا
مجلات دانش پلیمر
امام رضا
سکوت شب
برای آپلود مطلب اینجا را کلیک کنید
وبلاگ تخصصی گزارش کار های آزمایشگاه
پشت خطی
بانک اطلاعات نشریات کشور
کتابخانه عرفانی ما
فناوری
بهترین سایت دانلود رایگان
آگهی رایگان صنایع شیمیایی
امار لحظه به لحظه جهان
محاسبه وزن ایده ال
کتابخانه مجازی ایران
مرکز تقویم
عکس هایی از سرتاسر جهان
سایت اطلاعات پزشکی
موتور ترجمه گوگل
پایگاه اطلاع رسانی شغلی

اولین دانشنامه نرم افزار ایران
بانک مقالات روانشناسی
جدول
اپلود عکس
اوقات شرعی
ضرب المثل ها وحکایت ها
متن فینگیلیش بنویسید و به فارس
دانلود نرم افزار
سایت تخصصی نساجی
طراح سایت
مرجع اختصاصی کلمات اختصاری
کتابخانه مجازی ایران
کتابخانه مجازی ایران
کتابخانه مجازی ایران
کتابخانه مجازی ایران
کتابخانه مجازی ایران
این چیه؟
معماری

 

 


پلیمرها، بخش عمده ای از مشتقات نفتی هستند که در انواع مختلف در صنعت پتروشیمی، تولید و در صنایع گوناگون مورد استفاده قرار می گیرند.

امروزه استفاده از پلیمرها به اندازه ای رایج شده که می توان گفت بدونِ استفاده از آنها بسیاری از حوایج روزمره ما مختل خواهد شد. مقاله حاضر، پلیمرهای مقاوم حرارتی را مورد مطالعه قرار می دهد که علاوه بر مصارف متعدد، در صنایع هوا- فضا نیز نقش عمده ای ایفا می کنند.


پلیمرها، بخش عمده ای از مشتقات نفتی هستند که در انواع مختلف در صنعت پتروشیمی، تولید و در صنایع گوناگون مورد استفاده قرار می گیرند. امروزه استفاده از پلیمرها به اندازه ای رایج شده که می توان گفت بدونِ استفاده از آنها بسیاری از حوایج روزمره ما مختل خواهد شد. مقاله حاضر، پلیمرهای مقاوم حرارتی را مورد مطالعه قرار می دهد که علاوه بر مصارف متعدد، در صنایع هوا- فضا نیز نقش عمده ای ایفا می کنند. هنگامی که ترکیبات آلی در دمای بالا حرارت داده می شوند، به تشکیل ترکیبات آروماتیک تمایل پیدا می کنند. بنابراین می توان نتیجه گرفت که پلیمرهای آروماتیک باید در مقابل دماهای بالا مقاوم باشند. انواع وسیعی از پلیمرها که واحد های تکراری آروماتیک دارند، در سالهای اخیر توسعه و تکامل داده شده اند.

 

این پلیمرها در صنایع هوا- فضا مورد استفاده قرار می گیرند، زیرا در برابر دمای زیاد پایداری مطلوبی از خود نشان می دهند. برای این که یک پلیمر در برابر حرارت و در برابر گرما مقاوم تلقی شود، نباید در زیر دمای ??? درجه سانتی گراد تجزیه شود. هم چنین باید خواص مورد نیاز و سودمند خود را تا دماهای نزدیک به دمای تجزیه حفظ کند. این گونه پلیمرها دارای Tg بالا و دمای ذوب بالا هستند. پس می توان گفت پلیمرهای مقاوم حرارتی به پلیمرهایی گفته می شود که در دمای بالا بکار برده می شوند، به طوری که خواص مکانیکی، شیمیایی و ساختاری آنها، با خواص سایر پلیمرها در دماهای پایین متفاوت باشد. پلیمرهای مقاوم حرارتی به طور عمده در صنایع اتومبیل سازی، صنایع هوا- فضا، قطعات الکترونیکی، عایق ها، لوله ها، انواع صافی ها، صنایع آشپزی و خانگی، چسب ها و پوشش سیم های مخصوص مورد استفاده قرار می گیرد. پلیمرهای یاد شده هم به روش آلی و هم به روش معدنی تهیه می شوند. ذکر این نکته مهم است که روش آلی متداول تر و اغلب پژوهش ها توسط دانشمندان پلیمر در این زمینه ها به ثمر رسیده است.

 

 

پایداری حرارتی
پایداری حرارتی پلیمرها، تابع فاکتورهای گوناگونی است. از آنجا که مقاومت حرارتی تابعی از انرژی پیوندی است، وقتی دما به حدی برسد که باعث شود پیوندها گسیخته شوند، پلیمر از طریق انرژی ارتعاشی شکسته می شود. پس پلیمرهایی که دارای پیوند ضعیفی هستند در دمای بالا قابل استفاده نیستند و از بکار بردن منومرها و هم چنین گروه های عاملی که باعث می شود این پدیده تشدید شود، باید خودداری کرد.

 

 البته گروه هایی مانند اتر یا سولفون، نسبت به گروه هایی مانند آلکیل و NH و OH پایدارتر هستند، ولی وارد کردن گروه هایی مانند اتروسولفون و یا گروههای پایدار دیگر صرفاً بخاطر بالا بردن مقاومت حرارتی نیست، بلکه باعث بالا رفتن حلالیت نیز می شوند. تاثیرات متقابلی که بین دو گونه پلیمری وجود دارد، ناشی از تاثیرات متقابل قطبی- قطبی، و پیوند هیدروژنی (?-?? Kcal/mol) است که باعث بالا رفتن مقاومت حرارتی در پلیمرها می شوند. این قبیل پلیمرها باید قطبی و دارای عامل هایی باشند که پیوند هیدروژنی را بوجود آورند، مانند: پلی ایمیدها و پلی یورتانها. انرژی رزونانسی که به وضوح در آروماتیک ها به چشم می خورد، مخصوصاً در حلقه های هتروسیکل و فنیلها و کلاً پلیمرهایی که استخوان بندی آروماتیکی دارند باعث افزایش مقاومت حرارتی می شوند.

 

در مورد واحدهای تکراری حلقوی، شکستگی یک پیوند در یک حلقه باعث پایین آمدن وزن مولکولی نمی شود و احتمال شکستگی دو پیوند در یک حلقه کم است. پلیمرهای نردبانی یا نیمه نردبانی پایداری حرارتی بالاتری نسبت به پلیمرهای زنجیره باز دارند. بنابراین اتصالات عرضی موجب صلب پلیمرهای خطی می شوند که شامل حلقه های آروماتیک با چند پیوند یگانه مجزا هستند. با توجه به نکاتی که ذکر شد برای تهیه پلیمرهای مقاوم حرارتی باید نکات زیر رعایت شوند.
- استفاده از ساختارهایی که شامل قوی ترین پیوند های شیمیایی هستند. مانند ترکیبات هتروآروماتیک، آروماتیک اترها و عدم استفاده از ساختارهایی که دارای پیوند ضعیف مثل آلکیلن- آلیسیکلیک و هیدروکربن های غیر اشباع می باشند.


- ساختمان ترکیب باید به گونه ای باشد که به سمت پایدار بودن میل کند، پایداری رزونانسی آن زیاد باشد و بالاخره ساختارهای حلقوی باید طول پیوند عادی داشته باشند، به نحوی که اگر یک پیوند شکسته شد، ساختار اصلی، اتم ها را کنار هم نگه دارد.
 

 


لباس فضا نوردان
امروزه در زمینه پلیمرهای مقاوم حرارتی پیشرفت های زیادی حاصل شده است. پژوهشگری به نام کارل اسی مارول که یک محقق برجسته در زمینه مقاومت حرارتی پلیمرها است، باعث توسعه تجارتی پلی بنزایمیدازول، با نام تجارتی PBI ، شده است که به شکل الیاف برای تهیه لباس فضانوردان مورد استفاده قرار می گیرد. البته این تنها یکی از موارد کاربردهای متنوع پلیمرهای مقاوم حرارتی در برنامه های فضایی است. بی تردید اگر سالها پژوهش علمی و آزمایش های گوناگون موجب کشف الیاف پلیمری مقاوم برای تهیه لباس فضا نوردان نمی شد، هیچ فضا نوردی نمی توانست به فضا سفر کند.

 

طی سال های اخیر گونه های وسیعی از پلیمرهای آروماتیک و آلی فلزی مقاوم در برابر گرما، توسعه و تکامل داده شده اند، که تعداد کمی از آنها به علت قیمت بالای آنها در تجارت قابل قبول نبوده اند. پلیمرهای آروماتیک، به خاطر اسکلت ساختاری صلب، دمای گذار شیشه ای Tg و ویسکوزیته بالا، قابلیت حلالیت کم دارند، بنابراین سخت تر از سایر پلیمرها هستند. در حال حاضر بالاترین حد مقاومت گرمایی از پلیمرهای آلی بدست آمده است، بنابراین در سال های اخیر تاکید روی معرفی تفاوت های ساختاری پلیمرها بوده است.

 

پیوستن گروه های انعطاف پذیر مانند اتر یا سولفون در اسکلت، یک راهکار است. هر چند این اقدامات باعث حلالیت بیشتر، ویسکوزیته کمتر و معمولاً پایداری حرارتی کم می شود. نگرش دیگر برای وارد کردن گروههای آروماتیک حلقه ای این است که به صورت عمودی در اسکلت صفحه ای آروماتیک قرار می گیرد. همان طور که در پلی بنزایمیدازول اشاره شد این ساختارها که »کاردو پلیمر« نامیده می شوند معمولاً پایداری بالایی دارند، بدون این که خواص دمایی آنها از بین برود. وارد کردن اسکلت با گروههای فعال که در اثر گرما موجب افزایش واکنش حلقه ای بین مولکولی می شوند، راهی دیگر برای پیشرفت روندکار است.

 

مهم ترین و پرمحصول ترین راه از نقطه نظر توسعه تجارتی، سنتز الیگومرهای آروماتیک یا پلیمرهایی است که با گروههای پایانی فعالی، خاتمه داده شده اند. الیگومرهایی که انتهای آنها فعال شده اند، در دمای نسبتاً پایین ذوب می شوند و در انواع حلال ها نیز حل می شوند. هم چنین در موقع حرارت دادن به پلیمرهای شبکه ای پایدار تبدیل می شوند.
 

 


مقاومت در برابر حرارت
هنگامی که از پلیمرهای مقاومت حرارتی صحبت می شود باید مقاومت حرارتی آنها را برحسب زمان و دما تعریف کنیم. افزایش هر کدام از فاکتورهای ذکر شده موجب کاهش طول عمر پلیمر می شود و اگر هر دو فاکتور افزایش یابند طول عمر به صورت لگاریتمی کاهش می یابد. به طور کلی اگر یک پلیمر به عنوان پلیمر مقاوم حرارتی در نظر گرفته می شود، باید به مدت طولانی در ??? درجه سانتی گراد، در زمان های متوسط در پانصد درجه سانتی گراد و در کوتاه مدت در دمای یکهزار درجه سانتی گراد خواص فیزیکی خود را حفظ کند. به طور دقیق تر یک پلیمر مقاوم حرارتی باید طی سه هزار ساعت و در حرارت ??? درجه سانتی گراد، یا طی یکهزار ساعت در ??? درجه سانتی گراد، یا طی یک ساعت در ??? درجه سانتی گراد و یا طی ? دقیقه در ??? درجه سانتی گراد، خواص فیزیکی خود را از دست ندهد.

 

برخی از شرایط ضروری برای پلیمرهای مقاوم حرارتی، بالا بودن نقطه ذوب، پایداری در برابر تخریب اکسیداسیونی در دمای بالا، مقاومت در برابر فرآیندهای حرارتی و واکنش گرمای شیمیایی است. سه روش اصلی برای بالا بردن مقاومت حرارتی پلیمرها وجود دارد. افزایش بلورینگی، افزایش اتصال عرضی و حذف اتصال های ضعیفی که در اثر حرارت اکسید می شوند. افزایش بلورینگی، کاربرد پلیمرها را در دمای بالا محدود می کند. زیرا موجب کاهش حلالیت و اختلال در فرآورش می شود. برقرار کردن اتصال های عرضی در الیگومرها روش مناسبی است و خواص پلیمر را به طور واقعی اما غیر قابل برگشت تغییر می دهد.

 

 اتصالاتی که باید حذف شود شامل اتصال های آلکیلی، آلیسیکلی، غیر اشباع و هیدروکربن های غیر آروماتیک و پیوند NH است . اما اتصالاتی که مفید است شامل سیستم های آروماتیکی، اتر، سولفون و ایمید و آمیدها هستند. این عوامل پایدار کننده به صورت پل در ساختار پلیمر واقع و موجب پایداری آنها می شوند. از طرفی ضروری است که پلیمر از قابلیت به کار گیری و امکان فرآورش مناسب برخوردار باشد.

 

پس باید تغییرات ساختاری طوری باشد که حلالیت و فرآورش مناسب تر داشته باشند. برای این منظور باید از واحد های انعطاف پذیرِ اتر، سولفون، آلکیل و همچنین از کوپلیمره کردن، و تهیه ساختارهایی با زنجیر نامنظم استفاده کرد.به طور کلی پلیمرهای مقاوم حرارتی به چهار دسته تقسیم می شوند. پلیمرهای تراکم ساده، مانند پلیمرهایی که از حلقه آروماتیک تشکیل شده اند و با اتصالات تراکمی به یکدیگر متصل هستند. پلیمرهای هتروسیکل، یعنی پلیمرهایی که از حلقه های آروماتیک تشکیل شده اند اما از طریق حلقه های هتروسیکل به هم وصل شده اند. کوپلیمرهای ترکیبی تراکمی هتروسیکل، یعنی پلیمرهایی که شامل ترکیبی از اتصال های تراکمی ساده و حلقه های هتروسیکل می باشند و پلیمرهای نردبانی که شامل دو رشته زنجیر هستند.


ارسال شده در توسط جواد ابراهیم پور

جنس لباس

لباس های مناسب برای کوهنوردی از الیاف مختلفی تهیه می شوند. این الیاف به دو دسته طبیعی و مصنوعی تقسیم می شوند.

1. الیاف طبیعی : در دوران اولیه کوه نوردی تنها الیاف موجود الیاف طبیعی بودند. این الیاف غالبا آب را به خودجذب می کنند که این مسئله در حالت کلی مناسب نیست.

1.1. پنبه : در صورت خشک بودن مناسب است ول اگر خیس شود خاصیت عایقی خود را از دست می دهد و برای خشک شدن نیاز به زمان زیادی دارد به همین دلیل اطمینان به پنبه یا کتان برای گرم ماندن کار خطرناکی است ولی از طرف دیگر در هوای گرم پنبه باعث تهویه خوب و خنک شدن شما می شود همچنین شما را از نور خورشید محافظت می کند.

1.2 پشم : نسبت به پنبه رطوبت کمتری جذب می کند . بنابراین آب کمتری در خود نگه می دارد و برای خشک شدن هم به زمان کمتری نیاز دارد . زمانی که پشم خیس می شود الیاف آن مانند پنه به هم نمی چسبنددر نتیجه مقداری هوای مرده در ین الیاف باقی می ماند در نتیجه خاصیت عایقی خود را با نسبت کمتری حفظ می کند. این خاصیت پشم ( عدم چسبندگی الیاف ) باعث شده که پشم ماده اولیه خوی برای تهیه جوراب باشد.اشکال اساسی پشم در وزن سنگین و حجم زیاد آن است. هرچه مرحله تولید پشم کوتاهتر باشد ( به پشم خام نزدیکتر باشد ) عایق بهتری در مقابل آب خواهد بود . پشم تحریک کننده خارش در پوست است اما بعضی از انواع آن مثل مرینوس در تماس با پوست نرم و راحت هستند. پشم نسبت به الیاف مصنوعی در تماس با پوست قابلیت جذب رطوبت بیشتری دارد . الیاف پشم بر خلاف الیاف مصنوعی در مجاورت حرارت ذوب نمی شوند و آخر اینکه پشم در تماس با صطوح لغزنده مثل برف اصطکاک بیشتری تولید می کند پس برای ترمز کردن در سطوح شیب دار مناسب است

2.الیاف مصنوعی : الیاف مصنوعی تقریبا جایگزین الیاف طبیعی در کوهنوردی شده اند . اکثر الیاف مصنوعی خاصیت هیدرو فوبیک (تمایل به جذب آب کمتر) دارند . البته باید ذکر کرد که الیاف مصنوعی هم مقداری آب و رطوبت جذب می کنند ولی بر خلاف الیاف طبیعی ، این رطوبت در بین الیاف جای می گیرد نه درون الیاف ، به همین دلیل وقتی الیاف مصنوعی خیس می شوند می توان آن ها را چلاند و بقیه آب باقی مانده در الیاف به سرعت تبخیر خواهد شد .

2.1 پولستر و پولی پروپیلن : ساختار این گونه الیاف به گونه ای است که می توانند عرق بدن را به شکل فتیله ای از خود عبور دهند برای همین برای لایه ی مجاور پوست مناسب هستند . این الیاف آب را به خود جذب نمی کنند . پولی پروپیلن در تماسبا پوست تا حدی ایجاد خارش می کندو پس از مدتی استفاده ممکن است بوی نامطبوع بدهد ولی پولیستر در تماس با بدن نرمتر است و بوی بد کمتری دارد.

پولستر و پولی پروپیلن اگر در لایه مجاور پوست استفاده شوند، به صورت عایق هم به حفظ گرمای بدن کمک می کنند . ولی این نوع الیاف در برابر باد مقاومت ندارند. غالبا لباس های ساخته شده از پولستر و پولی پروپیلن سبک وزن هستند ، ولی بعضی از نمونه ها هم حجم زیادی اشغال می کنند.

2.2 نایلون : این ماده به صورت وسیعی در صنایع مختلف استفاده می شود . برای پوشاک ، بسته به مراحل مختلف تولید خواص مختلفی به خود می گیرد ولی به طور کلی از نایلون در لایه بیرونی استفاده می شود . همه انواع نایلون قدرت و دوام زیادی دارند.

اکثر انواع نایلون در مقابل باد مقاوم هستند . نقص نایلون در این است که آب را به خود جذب می کند ( مخصوصا اگر خوب عمل آوری نشده باشد ) و خشک شدن آن هم به آرامی صورت می گیرد .

و نکته آخر هم اینکه : زمانی که دو یا چند الیاف با هم مخلوط می شوند ، خواص نهایی الیاف ترکیب شده مابین خواص الیافی است که به عنوان مواد اولیه مصرف شده اند . برای نمونه لباسی که حاوی 80% پولیستر و 20% اسپاندکس خاصیت کش آمدن بیشتر و جذب رطوبت فتیله ای کمتری نسبت به پولیستر خالص دارد. 

 

 

موارد استفاده

اشکالات

مزیت

الیاف

لایه مجاور پوست ، لایه گرمایی (پولار) ، کلاه ، دستکش ، جوراب

بعضا تولید بوی بد می کنند در مقابل باد مقاوم نیستند ، می توانند حجیم باشند ، با حرارت دیدن ذوب می شوند

اغلبا آب کمی جذب می کنند . قابلیت گرمایی خود را در هنگام خیس بودن هم حفظ می کنند . سبک وزن هستند.

      پولیستر       پرو پیلن

در تمامی لایه ها استفاده دارد

وزن زیاد ، جذب آب بالا ، دیرتر خشک می شود در مقابل الیاف مصنوعی ، می توانند حجیم باشد

در مقابل باد و سایش از انواع مصنوعی مقاوم تر است .قابلیت گرمایی را در حالت خیس هم حفظ می کند دارای اصطکاک زیاد روی برف و یخ است . با حرارت دیدن ذوب نمی شود.

پشم

لایه خارجی بادگیر ، شلوار بارانی ، رو دستکشی ، جوراب های مقاوم در برابر بخار

اگر عمل نیاورده شود جذب کننده رطوبت است ، دیر خشک می شود ، لیز است و با حرارت دیدن خشک می شود .

قوی با دوام وزن کم مقاوم در برابر باد و سایش

نایلون

لایه مجاور پوست ، لایه میانی سبک

بعضا دیر خشک می شوند ، قیمت بالا

چند منظوره ، کش می آید ، نسبتا مقاوم در برابر باد و گرما ، معمولا سریع خشک می شوند ، انواع مختلف دارد و راحت است

      استرچ      نایلون بافته شده مخلوط

محافظ در مقابل آفتاب ، برای هوای سرد مناسب نیست

جذب خیلی زیاد آب ، آهسته خشک می شود ، اگر خیس باشد خاصیت گرمایی خود را از دست می دهد

در هوای گرم مناسب ، قابلیت تنفسی ، د صورت خشک بودن راحت

پنبه یا کتان

 


ارسال شده در توسط جواد ابراهیم پور

پلی سولفیدها

انواع چسب‌ها

چسب‌هایی که توسط واکنش شیمیایی سخت می‌شوند

چسب‌های اپوکسیدی:

اپوکسیدها ، بهترین نوع چسبهای شناخته شده ساختمانی هستند و بیشترین کاربرد را دارند. رزین اپوکسی که اغلب در حالت معمول استفاده می‌شود، معمولا دی گیلیسریل اتراز بیس فنل DGEBA)A) نامیده می‌شود و بوسیله واکنش نمک سدیم از بیس فنل A با اپی کلروهیدرین ساخته می‌شود. آمینهای آروماتیک و آلیفاتیک به عنوان عامل سخت کننده استفاده می‌شوند. این چسب‌ها به چوب ، فلزات ، شیشه ، بتن ، سرامیک‌ها و پلاستیک‌های سخت بخوبی می‌چسبند و در مقابل روغن‌ها ، آب ، اسیدهای رقیق ، بازها و اکثر حلال‌ها مقاوم هستند. بنابراین کاربرد بیشتری در چسباندن کفپوش‌های وینیلی در سرویس‌ها و مکان‌های خیس و به سطوح فلزی دارند.

چسب‌های فنولیک برای فلزات:

وقتی که فنل با مقدار اضافی فرمالدئید تحت شرایط بازی در محلول آبی واکنش کند، محصول که تحت عنوان رزول شناخته شده و الیگومری شامل فنل‌های پلدار شده توسط اتروگرومتیلن روی حلقه‌های بنزن می‌باشد، بدست می‌آید. برای جلوگیری از تشکیل حفره‌های پر شده از بخار ، اتصالات چسب‌های فنولیک تحت فشار ، معمولا بین صفحات پهن فولادی گرم شده توسط پرس هیدرولیک سخت می‌شوند. بدلیل شکننده بودن فنولیکها ، پلیمرهایی از جمله پلی وینیل فرمال ، پلی وینیل بوتیرال ، اپوکسیدها و لاستیک نیتریل اضافه می‌شود تا سخت‌تر گردند.

چسب‌های تراکمی فرمالدئید برای چوب:

تعدادی از چسب‌های مورد استفاده برای چوب نتیجه تراکم فرمالدئید با فنول و رزوسینول (1و3 دی هیدروکسی بنزن) هستند. بقیه با اوره یا ملامین متراکم می‌شوند.

چسب‌های آکریلیک:

چسب‌های ساختاری شامل منومرهای آکریلیک توسط افزایشی رادیکال آزاد در دمای محیط سخت می‌شوند. منومر اصلی ، متیل متاکریلات (MMA) می‌باشد، اما موارد دیگری از قبیل اسید متاکریلات برای بهبود چسبندگی به فلزات بوسیله تشکیل نمکهای کربوکسیلات و بهبود مقاومت گرمایی و اتیلن گلیکول دی متیل اکریلات برای شبکه‌ای کردن نیز ممکن است مورد استفاده قرار گیرد.

کلروسولفونات پلی اتیلن ، یک عامل سخت کننده لاستیک است و کیومن هیدورپراکساید و N,N دی متیلن آنیلین ، اجزاء یک آغازگر اکسایشی- کاهشی هستند. پیوند دهنده هایی که برای اتصالات محکم مصنوعی به استخوان‌های انسان و پوششهای چینی برای دندان‌ها استفاده می‌شود نیز بر مبنای MMA هستند و بطورکلی برای جسباندن فلزات ، سرامیک‌ها ، بیشتر پلاستیک‌ها و لاستیک‌ها استفاده می‌شود و اتصالات پرقدرتی را ایجاد می‌کنند.

چسب‌های غیر هوازی:

چسب‌های غیر هوازی در غیاب اکسیژن که یک بازدارنده پلیمر شدن است، سخت می‌گردد. این چسب‌ها اغلب بر پایه دی متاکریلات‌هایی از پلی اتیلن گلیکول هستند. کاربرد این چسب‌ها ، اغلب در محل اتصال چرخ دنده ها ، تقویت اتصالات استوانه‌ای و برای دزدگیری می‌باشد.

چسب های پلی سولفیدی:

پلی سولفیدها در ابتدا به عنوان دزدگیر استفاده می‌شدند و یک کاربرد مهم دزدگیری لبه‌های آینه‌های دوبل می‌باشد. هر دو برای اینکه واحدها را باهم نگه دارند و مانعی در برابر نفوذ رطوبت ایجاد کنند. آنها به وسیله بیس (2- کلرواتیل فرمال) با سدیم پلی سولفید تهیه می‌شوند و به منظور کاهش قیمت از پرکننده های معدنی استفاده می‌شود. به عنوان نرم کننده ، از فتالات‌ها و معرف‌های جفت کننده سیلانی استفاده می‌شود و عامل سخت کننده آنها شامل دی اکسید منگنز و کرومات هستند.

سفت شدن لاستیکی چسب‌های ساختمانی:

بسیاری از چسب‌های ساختمانی ، پلیمرهای لاستیکی حل شده ای در خودشان دارند. وقتی که چسب‌ها سخت می‌شوند، لاستیک به صورت قطراتی با قطر حدود 1µm رسوب می‌کند. لاستیکهای استفاده شده در این روش شامل پلی وینیل فرمال (pvf) و پلی وینیل بوتیرال (PVB) هستند که هر دو بوسیله واکنش آلدئید مناسب با پلی وینیل الکل ساخته می‌شوند

ارسال شده در توسط جواد ابراهیم پور
کاربرد مواد نانومتخلخل در پلیمریزاسیون و ایزومریزاسیون فرایندهای پالایش نفت

 

علوم و فناوری نانو در دهه 1980 میلادی توسط فیزیکدان آمریکایی "ریچارد فاینمن" تشریح شد. در این فناوری خواص فیزیکی مواد نانوابعاد در حوزه‌ای بین اثرات کوانتومی و خواص توده قرار می‌گیرد. علوم نانو محصول مطالعات دانشمندان در رشته‌های مختلف بوده است که با راه‌حل‌ها و روش‌های گوناگون و خلاقانه به صورت علوم بین رشته‌ای درآمده است . محققان و سیاستگذاران سراسر جهان انتظار دارند که علوم نانو موجب تغییرات وسیعی در نحوه زندگی شود.
در این نوشتار، ضمن بررسی فرایند کراکینگ / شکست کاتالیستی، انواع کاتالیست‌های مورد استفاده در این فرایند و تاثیر فناوری نانو بر آنها که منجر به ایجاد نسل جدیدی از کاتالیست‌ها با نام "نانوکاتالیست‌ها" شده، بررسی گردیده است.


مقدمه
پالایش نفت با تقطیر جزء به ‌جزء نفت‌خام به گروه‌های هیدروکربنی شروع شده و خواص محصولات مستقیماً متناسب با نحوه انجام فرآیند تبدیل نفت می‌باشد.
فرآیندها و عملیات پالایش نفت به پنج بخش اصلی تقسیم می‌شود :
الف) تفکیک (تقطیر) ب) فرآیندهای تبدیلی که اندازه و ساختار ملکولی هیدروکربن‌ها را تغییر می‌دهند این فرآیندها شامل: ب-1) تجزیه (تقسیم) ب-2) همسان‌سازی(ترکیب) ب-3) جایگزینی(نوآرائی) می‌باشند.
ج) فرآیندهای عمل‌آوری د) تنظیم و اختلاط
فرایند تجزیه که از زیر شاخه‌های فرایندهای تبدیلی محسوب می‌شود، شامل هیدروکراکینگ، شکست کاتالیستی و شکست گرمایی می‌شود.


پلیمریزاسیون
پلیمریزاسیون در صنایع پتروشیمی، فرآیند تبدیل گازهای اولفین سبک، شامل اتیلن، پروپیلن و بوتیلن به هیدروکربن‌های با وزن مولکولی بیشتر و عدد اکتان بالاتر می‌باشد که به‌عنوان مخلوطهای سوختی مرغوب استفاده می‌شود. درطی این فرآیند 2 یا بیشتر مولکول‌های اولفین یکسان، تشکیل یک مولکول با عناصر یکسان و خواص یکسان به‌عنوان مولکول‌های جدید می‌دهند.
پلیمریزاسیون می‌تواند بطور گرمایی یا در حضور کاتالیست دردمای پایین‌تر اتفاق بیفتد.

شکل 1 ) نمایه فرایند پلیمریزاسیون

 

ایزومریزاسیون
در ایزومریزاسیون بوتان نرمال، پنتان نرمال و هگزان نرمال، به ایزوپارافین‌های مربوطه با عدد اکتان بالاتر تبدیل می‌شود. پارافین‌های با زنجیره مستقیم، به زنجیره‌های شاخه‌دار با همان تعداد اتم ولی با ساختار هندسی متفاوت تبدیل می‌شوند.
محصولات ایزو بوتان این واحد، خوراک واحد آلکیلاسیون بوده و ایزوپنتان و ایزوهگزان برای مخلوط گازوئیل بکار می‌رود.


کاربردهای فناوری نانو در پلیمریزاسیون و ایزومریزاسیون

پلیمریزاسیون
به‌علت اینکه پلیمر شدن در این‌جا به معنی واقعی کلمه اتفاق نمی‌افتد بلکه واکنش تا تشکیل دی‌مر‌ها و تری‌مرها خاتمه می‌یابد لذا باید طراحی فضای واکنش به گونه‌ای صورت گیرد که با تشکیل دی‌مرها واکنش ادامه نیابد لذا می‌توان از مواد نانومتخلخلی استفاده کرد که ابعاد کانال‌های آن برای تحقق این امر مناسب باشند.این مواد نانوتخلخل را می‌توان نانوراکتور نامید. در این زمینه به کار "سانو" و "اومی" اشاره کرد که از سیلیکا مزوپروس به عنوان نانو راکتور برای پلیمریزاسیون اولفین‌ها استفاده کرده‌اند.[1]

در این روش ماده متخلخل MCM-41 حاوی فلز توسط روش Post – Synthesis با ترکیبات ارگانومتالیک یا آلکوکسید آماده شد و به عنوان نانوراکتور برای فرآیند پلیمریزاسیون اولفین بکار رفت. در حقیقت MCM-41 حاوی فلز به عنوان کوکاتالیست غیرهمگن به‌ کار می‌رود. [1]


ایزومریزاسیون
به دلیل اینکه کانال‌های مواد متخلخل مکان مناسبی برای انجام واکنش‌های شیمیایی می‌باشد می‌توان از نانومواد متخلخل برای این منظور استفاده کرد. این کار در واکنش مشابه پتروشیمی مورد بررسی قرار گرفته است. به عنوان مثال بائر و همکاران زئولیت‌های نانوساختار HZSM – 5 را در ایزومریزاسیون زایلن بررسی کرده‌اند.[2]
هیدروژن در جداکننده‌های با فشار عملیاتی بالا (Separator)، جدا شده و کلرید هیدروژن در ستون جداساز (Stripper) حذف می‌شود. حاصل آن که مخلوط بوتان بدست آمده می باشد وارد تفکیک‌کننده (Fractionator) شده، در آن بوتان از ایزوبوتان جدا می‌شود.در کلیه موارد بالا می‌توان از نانومواد متخلخل کربنی برای جداسازی گازها استفاده کرد.
در فرایند ایزومریزاسیون می‌توان به کاربردن متنوعی از مواد نانوساختار اشاره کرد همچنان که در طی تحقیقاتی برای پیدا کردن نانومواد مناسب برای فرایند ایزومریزاسیون آنتونلی و همکاران از میکروقفس های توخالی زیرکونیا با استفاده از پایه های مالسیلی کروی استفاده کرده‌اند.[3‍‍]

 

مراجع
 : 1Tsuneji Sano and Yasunori Oumi
2Catalysis Surveys from Asia Volume 8, Number 4 December 2004 295 - 304 Authors : Shim H.; Phillips J.1; Fonseca I.M.; Carabinerio S.
Source : Applied Catalysis A: General, November 2002, vol. 237, no. 1, pp. 41-51(11)
 : 3Antonelli D.M , Micro Porous & mesoporous Mat.vol 28

 ? Tsuneji Sano and Yasunori Oum

2 Bauer , Frank et.al

3 Antonelli D.M


ارسال شده در توسط جواد ابراهیم پور
 که از طریق پلیمریزاسیون پروپیلن به صورت یک پلیمر خطی تهیه می گردند و به اختصار پ-پ نامیده می شوند بعد از پیدا شدن کاتالیست زیگلرناتا تولید شدند این کاتا لیست تولید پلی پروپیلن ایزو تاکتیک که قادر به متبلور شدن می باشد را امکان پذیر ساخت .
 این الیاف در سال 1960در ایتالیا با نام تجاری مراکلون به صورت صنعتی تولید شده وبه بازار عرضه گردیدند . خصوصیات پروپیلن باعث رشد سریع آن در سطح بین المللی گردید وبعد از مدتی نسبتاً کوتاه ، پلی پروپیلن توانست از نظر مقدار تولید ، چهارمین مقام را بعد از پلی استر ، نایلون وآکریلیک کسب نماید .
عدم امکان رنگررزی الیاف پروپیلن به روشهای متداول برای دیگر الیاف ، باعث جلو گیری از رشد بیشتر این لیف مصنوعی گردیده است.
 
الیاف و نخ های نواری که دو کاربرد پلی پروپیلن را تشکیل می دهند نسبتاً به آسانی به روش ذوب ریسی تهیه می گردند و آسان بودن تولید این نوع الیاف و پائین بودن هزینه تولید استقبال بسیار گستردهای از آن را به همراه داشته است . با بکار گیری مواد بالا برنده مقاومت در مقابل اشعه ماوراء بنفش سعی شده است عیب کم بودن مقاومت پلی پروپیلن در مقابل این اشعه مرتفع گردد.
 
پلی پروپیلن دارای دمای ذوب بالا تر (175-165درجه سانتیگراد)در مقایسه با پلی اتیلن می باشد . از نقطه نظر استحکام ومقاومت در مقابل سایش ،پلی پروپیلن با پلی اتیلن تفاوت زیاد ندارد .
 همانطور که گفته شد پلی پروپیلن هم مثل پلی اتیلن با روش های معمول قابل رنگرزی نبوده و به روش رنگرز ی توده که در آن قبل از تشکیل الیاف ، به پلیمر مذاب اضافه می شود رنگرزی می گردد.
 لازم به ذکراست که الیاف الفینی اصلاح شده به روش شیمیایی که قادر به رنگرزی شدن با روشهای معمولی می باشند تولید شده اند .
 
به عنوان مثال پلی پروپیلن حاوی پلی ونیل پیریدین به صورت پخش شده ویا ونیل پیریدین که جزئی ماکرو مولکول را تشکیل می دهد با رنگینه های اسیدی قابل رنگرزی است و به هر حال قیمت تمام شده این نوع الیاف باعث گردیده است که از رنگرزی توده به عنوان مهم ترین روش برای رنگرزی این نوع الیاف استفاده گردد.

 
تولید الیاف پلی پروپیلن
ماده اولیه تولید الیاف پلی پروپیلن را پروپیلن(3CH2=CHCH)تشکیل می دهد که به صورت یک تولید جانبی در تولید اتیلن به روش شکستن مولکول نفت درصنعت پتروشیمی شکل می گیرد .گازهای مابع حاوی پروپیلن ، دیگر ماده این منبع را تشکیل می دهند .
پلی پروپیلن از پلیمریزاسیون پروپیلن در شرایط دما و فشار نسبتاً ملایم ودر حضور کاتالیست معروف زیگلر – ناتا انجام می شود . وجود این کاتالیست ، پلیمری به صورت ایزوتاکتیک را تشکیل می دهد که قادر به متبلور شدن تا حدود 90 درصد می باشد .
دیگر فرمهای آتاکتیک وسیندو تاکتیک پلی پروپیلن دارا ی خواص مناسب جهت تشکیل الیاف نمی باشند . با توجه به شرایط سرد شدن ، ساختار بلورین پلی پروپیلن دو شکل متفاوت پیدا میکند . چنانچه پلی پروپیلن مذاب سریعاً سرد گردد ، ساختار بلورین پایدار که پاراکریستالین و یاسمکتیک نام دارد شکل می گیرد .
چنانچه پلی پرو پیلن مذاب به آرامی سرد گردد . ساختار بلورین معروف به منوکلینیک بوجود می آید.حرارت دادن پلی پروپیلن ازنوع پاراکریستالین به بیش از 80 درجه سانتیگراد باعث تغییر ساختار بلورین آن به شگل منوکلینیک می گردد
 
در الیاف پلی الفینی ،پیوندهای شیمیایی ویونی بین ماکرو مولکول های پلی پروپیلن وجود نداشته ونیرو های بین زنجیره ای به نیرو های واندروالس محدودمی گردند . ازاین رو برای کسب خواص فیزیکی مناسب با وزن مولکولی الیاف پلی الفینی در مقایسه با الیاف دیگر بالاتر انتخاب گردد.
با توجه به سرعت تولید و دمای پلیمر مذاب ، سرعت سرد شدن وکشش بعد از تولید ، الیاف پلی پروپیلن ازنظر جهت گیری بلورهای خود نسبت به محور لیف با یکدیگر تفاوت دارند و افزایش سرعت ریسندگی اولیه واعمال کشش بعد از تولید ، جهت گیری بلورها رادر جهت محور لیف افزایش می دهد.
پلیمریزاسیون پروپیلن به سه روش امکان پذیر می باشد . در روش تعلیق که یک روش کلاسیک بحساب می آید پروپیلن در یک محیط رقیق کننده که معمولاً یک هیدرو کربن آلیفاتیک می باشد پلیمریزه می گردد مکمل این روش ، پلیمریزاسیون فاز گاز می باشند.

 
شدر ذوب ریسی پلی پروپیلن ، مشابه دیگر الیاف ترموپلاستیک مثل پلی استر وپلی امید ، وزن مولکولی متوسط ، توزیع وزن مولکولی و همچنین شاخص جریان توده پلیمری مذاب (MFI) وخصوصیات الیاف تولید شده را تحت تأثیر خود قرار می دهند . بطور کلی افزایش وزن مولکولی پلیمر ، افزایش استحکام الیاف تولید شده را به همراه دارد.
برای الیاف پلی پروپیلن که به منظور مصرف در صنعت نساجی تولید می گردندوزن مولکولی متوسط و برای الیاف پلی پروپیلن با استحکام زیاد که به عنوان الیاف با کارایی بالا تولید می کردند وزن مولکولی بالا انتخاب می گردد .
 باتوجه به مربوط بودن شاخص جریان مذاب و وزن مولکولی متوسط به یکدیگر ، شاخص جریان مذاب مناسب درتولید الیاف نساجی 25-15 گرم بر10 دقیقه وبرای الیاف باکارایی بالا 5-3 گرم بر10 دقیقه ذکرشده است
 
آزمایشات نشان داده است که محدوده کوچکتر توزیع وزن مولکولی پلیمر ، به قابلیت ریسندگی اولیه بهتر ، کمک می نماید . باتوجه به بالابودن وزن مولکولی پلی پروپیلن که افزایش ویسکوزیته توده مذاب در ریسندگی اولیه آنرا به همراه دارد ، دمای پلی پروپیلن مذاب درریسندگی اولیه آنها70 تا120درجه بیش از دمای پلیمربوده ودرمحدوده 230 تا 280 درجه سانتیگراد انتخاب می گردد . شکل زیر ذوب ریسی رابه صورت شماتیک نشان می دهد
 
دراین روش پلیمربه صورت گرانول از تغذیه کننده (هاپر) وارد مارپیچی ذوب کننده شده بر اثر گرمایش توسط مارپیچی ذوب می گردد
 . پلیمر مذاب سپس به کمک پمپ تغذیه از طریق ***** به رشته ساز تغذیه شده وپس از خروج از روزنه های رشته ساز تحت تاثیر نیروی کششی قرار می گیرد و با از دست دادن گرما به محیط خود جامد گردیده وسر انجام روی بسته ای پیچیده شده ویا آنکه به صورت مداوم به بخشی دیگر از خط تولید نهایی تغذیه می گردد .
 از آنجایی که پلی پرو پلین دارای گرمای ویژه بالا (KJ/Kg-K2-6/1) وضریب هدایتی کم (J/m.s.k3/0-1/0) می باشد ، لذا طول منطقه سرد کننده بعد از رشته ساز در مقایسه با الیافی مثل نایلون ویا پلی استر ، باید طویل تر انتخاب گردد . به همین ترتیب سرعت های تولید بالاتر به منطقه سرد کننده طویل تری احتیاج دارند . از این رو ، طول ستون ریسندگی ممکن است به 10متر برسد .

 
با توجه به پائین بودن دمای ترانزیسیون ثانویه الیاف الفینی از دمای اطاق ، تبلور الیاف نه تنها در سرد شدن در ستون ریسندگی اولیه شکل می گیرد بلکه این فرآیند ممکن است بعداً هم روی بوبین ادامه پیدا می کند بنابراین شرایط انجماد در ستون ریسندگی و همچنین شرایط نگهداری بوبین پس از تولید ، تبلور الیاف الفینی را تحت تأثیر خود قرار می دهند تعداد روزنه های رشته سازهای تولید کننده نخهای فیلامنتی ممکن است با توجه فیلامنت های مورد احتیاج بین 150- 10 متغیر میباشد رشته سازهایی که برای تولید الیاف به منظور بریده شدن و مورد استفاده قرار گرفتن به صورت کوتاه ( استیپل) به کار گرفته میشوند ممکن است تا 20000 روزنه داشته باشند
 
با توجه به سرعت تولید ، الیاف تولید شده ممکن است تا 6 برابر طول اولیه خود کشیده شوند تا خواص مکانیکی مطلوب را بدست آورند . درجه کشش قابل کسب برای پلی پروپیلن پاراکریستالین بیشتر از پلی پروپیلن منو کلینیک می باشد واین تفارت به مکانیک تغییر شکل مختلف برای ساختار منو کلینیک پاراکریستالین ربط داده شده است .
پدیده های فیزیکی مهم در ذوب ریسی را می توان به صورت زیر خلاصه نمود:
-رفتار توده مذاب از نقطه نظر رئولوژی
-کاهش قطر جریان در روزنه رشته ساز
-سرمایش جریان
-تبلور وتشکیل ساختار لیف

 
با اعمال کشش به الیاف بعد از ریسندگی اولیه ، نظم داخلی آنها افزایش یافته وتبلور بیشتری شکل می گیرد . با توجه به دمای تبدیل شیشه ای پائین این نوع الیاف ، کشش آنها با سرعت کم به مقدار 3تا8 برابر بدون گرمایش امکان پذیر است.
 کشش الیاف بدون گرمایش به کشش سرد معروف است.برای افزایش سرعت کشش ،الیاف پلی پروپیلن حرارت داده می شوند .کشش همراه با گرمایش به کشش گرم معروف است.ساختار جدید بعد از کشش ، معمولاً با سرد نمودن الیاف پایدار می گردد.
الیاف پلی پروپیلن با توجه به قیمت ارزانتر انها نسبت به الیاف دیگر برای طیف گسترده ای از کاربرد ها مورد استفاده قرار گرفته اند .به عنوان مثال ،نخ کفپوش های از نوع تافتینگ،نخ خامه قالی ، الیاف کفپوشهای نمدی ،کاربردهای نساحی الیاف پلی پروپیلن را تشکیل می دهند.کاربردهای صنعتی پلی پروپیلن را طناب، منسوجات کشاورزی و***** ، منسوجات عمرانی (کاربرد در عمران)گونی ،توری وموارد دیگری تشکیل می دهند . برای کاربردهای صنعتی هم از الیاف پلی اتیلن استفاده می شود
 
سبک بودن پلی اتیلن وپلی پروپیلن از آب وهمچنین عدم جذب آب توسط این الیاف ودر نتیحه عدم تغییر در خواص مکانیکی انها بر اثر تماس با رطوبت از خصوصیات بارز این دو نوع لیف در مقایسه با الیاف دیگر است.
الیاف الفینی علاوه بر داشتن نهایت خاصیت آبگریزی ،در مقابل تعداد زیادی از اسیدهای غیر آلی ، بازها وحلال های آلی در دمای اطاق مقاوم باشند . این خواص تا حدودی به وزن مولکولی بسیار بالای این الیاف مربوط می گردد. سولفوریک ونیتریک اسید وهمچنین دیگر اسیدهای قوی در دماهای بالا قادر به تخریب پلی الفین ها می باشند.پلی پروپیلن معمولی که به بازار عرضه می گردد دارای مقدار زیادی مواد افزودنی می باشد .نمونه هایی از این مواد که به منظور امکان پذیر ساختن تولید پلی پروپیلن به ان اضافه می گردند به قرار زیر است :
ضد اسید
مواد ضد اسید مثل کلسیم ویا سدیم استئارت نقش خنثی سازی بقایای کاتالیست مورد استفاده قرار گرفته در مرحله پلیمریزاسیون را به عهده دارند.در غیر اینصورت امکان تشکیل اسید وجود دارد که می تواند مشکلاتی مثل اثر سوء بر دستگاههای تبدیل را به همراه داشته باشد.
ضد اکسیداسیون
مواد ضد اکسیداسیون به عنوان محافظت از پلیمر در مقابل شکسته شدن ماکرومولکول در حین تولید و بعد از آن مورد استفاده قرار می گیرند.فنل با ممانعت فضایی نمونه ای از مواد ضد دی اکسیداسیون (آنتی اکسیدان )می باشد . لازم به ذکر است که علیرغم به همراه داشتن این مواد افزودنی ،پلی پروپیلن به عنوان اصلاح شده در نظر گرفته نمی شود.

 
علیرغم مزایای چشمگیر ، الیاف پلی پروپیلن دارای سه مشکل عمده در رابطه با کاربرد خود بصورت زیر می باشند :
الف : دمای ذوب نسبتاً پائین:
تفاوت زیاد بین دمای ذوب الیاف پلی پروپیلن و دیگر الیاف مثل پلی استر و پلی آمید ، کاربرد وسیعتر پلی پروپیلن را محدود ساخته است .
ب : تخریب بر اثر اکسیداسیون
وجود پیوند C-H نوع سوم د رپلی پروپیلن تخریب آنرا بر اثر اکسیداسیون شدت می بخشد . گرما ونور به عنوان یک کاتالیست برای واکنش اکسیداسیون عمل می نماید . از این رو ، مقاومت کم الیاف پلی پروپیلن معمولی در مقابل نور و گرما ، عیب بزرگی برای آنها بشمار می آید . جذب اکسیژن توسط این پلیمر ، باعث شکستن ماکرومولکول و در نتیجه کاهش درجه پلیمریزاسیون بر اثر تشکیل هیدروپراکسیدها در دمای بالا می باشد . به همین علت ، در پلیمریزاسیون آن از مواد ضد اکسید کننده استفاده می شود.
از نقطه نظر تخریب بر اثر گرما ، پلی پروپیلن به علت دارا بودن کربن نوع سوم در معرض خطر بیشتر نسبت به پلی اتیلن قرار دارد . نور خورشید هم از طریق مکانیزم فتواکسیداسیون با اثری مشابه گرما باعث تخریب پلی الفین ها می گردد . بخش ماورای بنفش نور خورشید نقش عمده ای در تخریب به عهده دارد . الیاف ظریف سریعتر از الیاف ضخیم تحت تأثیر نور خورشید قرار می گیرند .
 
ج : عدم امکان رنگرزی با روشها متداول برای دیگر الیاف
همان طور که قبلاً گفته شد با توجه با عدم وجود گروههای قطبی در پلی پروپیلن ، این لیف بدون اصلاح شدن قادر به قبول تعداد زیادی از رنگینه های مختلف نبوده و رنگرزی نوع معمولی آن امروزه به کمک رنگرزی توده انجام می شود .
برای کاهش کمبودهای پلی پروپیلن سعی شده است که این نوع لیف ترموپلاستیک با توجه به هدف خاص اصلاح گردد . این اصلاح ممکن است که خواص دیگری را نیز تحت تأثیر خود قرار دهد . اصلاحات برای بهبود و حتی کسب خصوصیات دیگر ممکن است از طریق اصلاح شیمیایی پلیمر و یا اصلاح فیزیکی در مرحله تولید و یا بعد از آن انجام شود

ارسال شده در توسط جواد ابراهیم پور

مواد هوشمند افق تازه ای از علم را در برابر بشر گشوده اند و توجه به آن ها رویاهای دیرینه ای از بشر را تحقق خواهد بخشید.

معرفی:
انواع مختلفی از مواد همچون فروالکتریک ها (که در میدان الکتریکی کرنش می کنند)، آلیاژهای حافظه دار (که در واکنش به تغییرات دما، دچار تغییر شکل ناشی از تبدیل فاز می شوند) و مواد منعطف مغناطیسی (که در میدان مغناطیسی کرنش می کنند)، قابلیت های حس گری و تحریک پذیری از خود نشان می دهند. این پدیده ها برعکس یکدیگر عمل می کنند و بنابراین می توان این مواد را، جداگانه یا با هم، به کار برد و قابلیت حس گری و تحریک پذیری را برای پاسخگویی به شرایط محیطی با یکدیگر ترکیب کرد. هم اکنون از مواد یاد شده در چاپ گرهای جوهرافشان، درایوهای دیسک مغناطیسی و وسایل ضد لختگی خون استفاده بسیار گسترده می شود.

کامپوزیت ها با پایه سرب - تیتان - روی (PZT) و سایر مواد فروالکتریک که دارای حساسیت زیاد، واکنش چندگانه فرکانسی و فرکانس متغیر هستند، بخش مهمی از مواد هوشمند به شمار می روند. مثلاً کامپوزیت PZT فرستنده-گیرنده ای است که در محفظه ای به شکل هلال جاسازی می شود و پاسخ را به گونه ای پایدار تقویت می کند. نمونه دیگر، کامپوزیت های باریم- استرونتیم- تیتان و مواد غیر فروالکتریک هستند که واکنش های پرس فرکانسی و پرس میدانی نشان می دهند. مصرف این کامپوزیت ها در حس گرها و تحریک کننده هایی است که می توانند برای  هماهنگی با سیگنال یا رمزگشایی آن، فرکانس خود را تغییر دهند. هم اکنون از فروالکتریک ها در اجزای حافظه ای غیر متغیر، کارت های هوشمند و اجزای فعال اسکی های هوشمند- که در واکنش به تنش تغییر شکل می دهند- استفاده می شود.

بخش مهم دیگری از این مواد، پلیمرهای هوشمند هستند (مثلاً ژل های جدیدی که در واکنش به میدان الکتریکی تغییر شکل می دهند). از پلیمرهای الکترواکتیو در ساخت "ماهیچه های مصنوعی" نیز استفاده شده است. پلیمرهای موجود کنونی قدرت مکانیکی محدودی دارند، اما حوزه پلیمرها حوزه تحقیقاتی بسیار پویایی است و کاربردهای بالقوه ای در روبات های کاوش گر فضایی، ماموریت های بسیار خطرناک و تجسس را نوید می دهد. همچنین می توان هیدروژل هایی ساخت که در واکنش به تغییرات ph و دما منبسط و منقبض شوند. این هیدروژل ها (به شکل کپسول) قادر خواهند بود در واکنش به تغییرات شیمیایی، داروهایی در بدن ترشح کنند (مثلاً ترشح انسولین بر پایه تمرکز گلوکز). روند دیگر در رهاسازی کنترل شده دارو در بدن، مواد با هسته های هیدروفوبیک و پوسته هیدروفیلیک است.

چشم انداز آینده:
جهانی که از تحریک کننده ها و حس گرهای شبکه شده (مثلاً روی دیوارها، لباس ها، لوازم منزل، وسایل نقلیه و محیط پیرامونی) اشباع باشد، نوید دهنده بهبود، بهینه سازی و مشتری گرایی سیستم های حس گر از طریق دسترسی بیشتر به اطلاعات و تحریک پذیری هر چه مستقیم تر است. ارتباطات قابل دسترس مستمر، فهرست بندی و مکان یابی اقلام شخصی برچسب دار (برچسب های الکترونیکی، شیمیایی و غیره) و هماهنگی کارکردهای پشتیبان، دستاوردهایی هستند که تا سال 2015 به تدریج تحقق خواهند یافت.

توسعه مداوم حس گر های بیومتریک پنهان و ریز، همراه با تحقیق پیرامون شناسایی صدا و دست خط و اثر انگشت، به اثربخشی سیستم های ایمنی فردی می انجامد. از این سیستم ها می توان برای مقاصد پلیسی، نظامی، سازمانی، شخصی و تفریحی استفاده کرد. با ترکیب این سیستم ها و تکنولوژی های اطلاعات امروزی، بسیاری از دغدغه ها پیرامون مسائل امنیتی و حریم خصوصی افراد مرتفع خواهد شد. همچنین کاربردهایی برای ایمن سازی بهتر اسلحه کمری (با نصب قفل های تشخیص هویت مالک واقعی) و دزدگیر وسایل نقلیه ایجاد خواهد شد.

سایر کاربردهای مواد هوشمند که احتمالاً تا سال 2015 تحقق خواهند یافت عبارتند از:
- لباس هایی که به شرایط مختلف آب و هوایی حساس اند، با سیستم های اطلاعات تعامل دارند، علائم حیاتی را کنترل می کنند، قادر به ترشح مواد دارویی هستند و جراحات را به طور خودکار محافظت می کنند.
- ایرفویل هایی که خود را با شرایط آب و هوایی سازگار می کنند.
- ساختمان هایی که خود را با شرایط آب و هوایی سازگار می کنند.
- پل ها و جاده هایی که ترک را احساس و آن را مرمت می کنند.
- آشپزخانه هایی که با دستورات بی سیم آشپزی می کنند.
- تلفن ها و مراکز تفریحی که از تکنیک های "واقعیت مجازی" استفاده می کنند.
- تشخیص پزشکی شخصی (احتمالاً در تعامل مستقیم با مراکز درمانی)

البته سطح پیشرفت و عجین شدن این تکنولوژی ها با زندگی روزمره بیشتر به میزان استقبال مشتریان بستگی دارد تا به توسعه ها و پیشرفت های فنی.

علاوه بر عملکردهای تجسس و شناسایی که ذیل مواد هوشمند تشریح شد، توسعه روبات ها منجر به حس گرهای نو و قوی تری برای کشف و تخریب مواد منفجره و قاچاق و عملیات در محیط های بسیار خطرناک خواهد شد. افزایش عملکرد مواد، چه در منابع انرژی (مثل باتری ها) و چه قابلیت های حس گری و تحریک پذیری و همچنین یک پارچه سازی این عملکردها با قدرت محاسبات کامپیوتری، راه ظهور کاربردهای یاد شده را هموارتر خواهد ساخت.

این روندهای بالقوه، دغدغه ها و تنش هایی نیز به همراه خواهد داشت. اطلاعات حس گری و دسترسی به پایگاه های داده ای، نگرانی هایی را پیرامون حریم خصوصی افراد ایجاد می کنند.

سرانجام اینکه، آهنگ توسعه مواد هوشمند احتمالاً به سطوح سرمایه گذاری و پیشران های بازار بستگی خواهد داشت. در بسیاری موارد منافع و صرفه جویی های آنی ناشی از کاربرد مواد هوشمند، پیشران توسعه خواهند بود، اما نباید تردید داشت که تحقیقات نامتعارف مواد، نیازمند حمایت افکار عمومی و ایمان به سرمایه گذاری های بلند مدت تر است.

تحلیل:
چنان که ملاحظه می شود تکنولوژی مواد هوشمند، تکنولوژی کم اهمیت و با کاربردهای محدودی نیست. این تکنولوژی، برحسب آنکه چه زمانی به مراحل رشد سریع خود در بازار برسد، تحولات وسیعی را در کاربردهای مختلف خود به همراه خواهد داشت. به عنوان نمونه در بعد نظامی می تواند بسیاری از روش ها و تاکتیک های عملیاتی را دست خو ش تحول کند.

سؤال مهم در این رابطه آن است که: "در کشور ما تا چه میزان به این تکنولوژی توجه شده و حتی شناخت لازم از آن وجود دارد؟"

اگر با همکاری کلیه کارشناسان و تحلیل گران کشور، به تدریج گزارش های بیشتری راجع به این تکنولوژی و وضعیت آن در کشور ارائه شود، می توان پاسخ دقیق تری به این سوال داد.

برای مطالعه مقاله دیگری در  ابره مواد هوشمند به آدرس زیر مراجعه نمایید:
http://www.newdesign.ir/search.asp?id=395&rnd=6585

منبع: http://material.itan.ir/?ID=390 


ارسال شده در توسط جواد ابراهیم پور
ارسال شده در توسط جواد ابراهیم پور
ارسال شده در توسط جواد ابراهیم پور
  • Canadian Bioethics Report

  • Canadian Biosystems Engineering

  • Canadian Journal of Chemical Engineering

  • Cancer Biotechnology Weekly

  • Carbohydrate Polymers

  • Cardiovascular Engineering

  • Catalysis Letters

  • Catalysis Reviews

  • Catalysis Surveys from Asia

  • Catalysis Today

  • CATTECH

  • Cellulose  

  • Chemical & Engineering News

  • Chemical Engineering

  • Chemical Engineering and Processing

  • Chemical Engineering and Technology - CET

  • Chemical Engineering Journal

  • Chemical Engineering Journal and the Biochemical Engineering Journal

  • Chemical Engineering Research and Design

  • Chemical Engineering Science

  • Chemical Vapor Deposition

  • Chemie Ingenieur Technik - CIT

  • Chemistry and Technology of Fuels and Oils

  • Chemistry of Materials

  • Chemistry World

  • Clean Air Journal

  • Clean Technologies and Environmental Policy

  • Colloid and Polymer Science

  • Colloid Journal

  • Colloids and Surfaces A: Physicochemical and Engineering Aspects

  • Colloids and Surfaces B: Biointerfaces

  • Combustion and Flame

  • Combustion Theory and Modelling

  • Communications in Numerical Methods in Engineering

  • Composites Science and Technology

  • Computational and Theoretical Polymer Science

  • Computer Applications in Engineering Education

  • Computers and Chemical Engineering

  • Computers and Industrial Engineering

  • Control Engineering Practice

  • Corrosion Engineering, Science and Technology

  • Corrosion Science

  • Crystal Growth & Design

  • Current Microbiology

  • Current Opinion in Biotechnology

  • Current Opinion in Colloids And Interface Science

  • Desalinatio

  • Developing World Bioethics

  • Developments in Chemical Engineering and Mineral Processing  

  • Doklady Chemical Technology

  • Drug Development and Industrial Pharmacy

  • Drug Discovery & Development

  • Drying Technology

  • Dyes and Pigments


  • ارسال شده در توسط جواد ابراهیم پور





    Editorial Reviews
    Book Deion
    Many studies have concluded that the major source of energy for the global economy in the first half of the 21st century will be natural gas. With natural gas becoming more and more important there is increasing demand for information, yet less and less available material on this subject. The Natural Gas Engineering Handbook is the only book available that covers this subject in a comprehensive and practical way. This book covers the full scope of natural gas engineering, from gas reservoir engineering to gas production systems to gas processing. It adapts a computer-assisted approach, which is current practice in the industry and is severely lacking in other books on natural gas engineering.

    About the Author
    Boyun Guo, PhD, SPE, is one of the most respected petroleum engineering authors in the world and has written several books and many papers, including The Air and Gas Drilling Manual and Offshore Pipelines. He earned his PhD from New Mexico Tech. He is also a professor of petroleum engineering at the University of Louisiana at Lafayette. Ali Ghalambor, PhD, is the head American Petroleum Institute Endowed Professor of Petroleum Institute Endowed Professor of Petroleum Engineering at the University of Louisiana at Lafayette. He has served on the Society of Petroleum Engineers Board of Directors as a recipient of the SPE Distinguished Achievement Award. He has authored over 100 scholarly papers, journal articles and books.

    Product Details

    • Hardcover: 446 pages
    • Publisher: Gulf Publishing Company; Har/Cdr edition (July 31, 2005)
    • Language: English
    • ISBN-10: 0976511339
    • ISBN-13: 978-0976511335
    • Product Dimensions: 9.1 x 6.1 x 1.4 inches

    دانلود در ادامه مطلب


    ادامه مطلب

    ارسال شده در توسط جواد ابراهیم پور
    <   <<   6   7   8   9   10   >>   >